

CRYSTAL ASSISTED MANIPULATION OF HIGH ENERGY PARTICLE BEAM IN UA9

W. Scandale

outlook

Historical perspective

- RD22 at the CERN-SPS as a test bed of beam extraction at LHC
- E853 at the FNAL-Tevatron as a test bed for the SSC
- The CERN-INTAS programmes on crystal technology
- Crystal collimation test at RHIC
- Crystal collimation test at the Tevatron
- Collimation in LHC
- UA9 as a test bed for crystal assisted collimation at LHC
- Radiation hardness of crystals

RD 22: extraction of 120 GeV protons (SPS: 1990-95)

	The RD22 Collaboration, CERI	N DRDC 94-11	
		Crystal 1	Crystal 2
Electrostatic	beam intensity (protons)	$(7.0~\pm~0.1)~\cdot~10^{11}$	$(3.7 \pm 0.1) \cdot 10^{11}$
circulating	beam lifetime (hrs)	$20~\pm~2$	$12~\pm~1$
kick ms $\approx 0.005 \mu rad$ $\approx 5.10^{11} p$	protons lost per second	$(6.7 ~\pm~ 0.6)~\cdot~ 10^{6}$	$(8.9~\pm~0.7)~\cdot~10^{6}$
	protons detected per second	$5.6 \cdot 10^5$	$6.6 \cdot 10^{5}$
120 GeV/c	background (%)	5	2
Detectors	detection efficiency (%)	$78~\pm~12$	$78~\pm~12$
Bent Si - Crystal	extraction efficiency (%)	$10.2~\pm~1.7$	$9.3~\pm~1.6$

• Large channeling efficiency measured for the first time

Consistent with simulation expectation extended to high energy beams

Experimental proof of multi-turn effect (channeling after multi-traversals)

Definition of a reliable procedure to measure the channeling efficiency

RD 22: varying the proton energy

G. Arduini et al., CERN SL 97-031 and SL 97-055

Beam	Extraction	Prediction
energy (GeV)	efficiency (%)	simulation (%)
14	0.55 ± 0.3	0.46
120	15.1 ± 1.2	15.1*
270	18.6 ± 2.7	17.7

Dechanneling vs beam energy

- Critical angle $\psi_c \propto p^{-1/2}$
- Dechanneling is induced by hits on e⁻ by bending of the atomic planes
 e- hit dech. Length --> L_D x p
 bending dech. Length --> L_B = L_D (1-F)²

 $F = f(p, l, \vartheta) =$ dechanneling factor

Multiple scattering and dechanneling determine the dependence of efficiency on energy
For a given beam energy and crystal bending angle there is an optimal crystal length
Extrapolations of crystal efficiency to the LHC beam energy can be considered reliable

RD 22: ion extraction

(10^7 ions)	lifetime (hrs)	efficiency $(\%)$
13.0	2.2	4.0 ± 1.5
10.0	0.3	10.0 ± 3.5
6.7	1.2	$9.0{\pm}3.0$
5.0	0.04	$11.0 {\pm} 4.0$
5.0	0.23	$5.0{\pm}2.0$

High energy ions are efficiently channeled

Angular scan FWHM smaller than with protons

Electromagnetic break-up cross section large

Multi-turn effect less effective than with protons

RD22: what for?

Fig. 2. Schematic layout of vertical halo extraction using channeling in a bent silicon crystal. After the warm septum magnet the extracted beam is bent by a string of five superconducting dipoles of the LHC type [14].

Extraction efficiency limited by the crystal technology

E853: extraction of 900 GeV protons (FNAL: 1993-98)

- Lambertson, crystal
- Useful collimation studies
- Extensive information on time-dependent behavior
- Very robust

INTAS 00-132: short crystals (2001)

VOLUME 87, NUMBER 9

PHYSICAL REVIEW LETTERS

27 August 2001

High-Efficiency Beam Extraction and Collimation Using Channeling in Very Short Bent Crystals

A. G. Afonin,¹ V. T. Baranov,¹ V. M. Biryukov,¹ M. B. H. Breese,² V. N. Chepegin,¹ Yu. A. Chesnokov,¹ V. Guidi,³ Yu. M. Ivanov,⁵ V. I. Kotov,¹ G. Martinelli,⁴ W. Scandale,⁶ M. Stefancich,⁴ V. I. Terekhov,¹ D. Trbojevic,⁷

E. F. Troyanov,¹ and D. Vincenzi⁴

 ¹Institute for High Energy Physics, Protvino, 142281, Russia
 ²Surrey University, Guildford, GU2 5XH, United Kingdom
 ³Ferrara University, Department of Physics and INFN, I-44100, Italy
 ⁴Ferrara University, Department of Physics and INFM, 1-44100, Italy
 ⁵Petersburg Nuclear Physics Institute, Gatchina, 188350, Russia
 ⁶CERN, Geneva 23, CH-1211, Switzerland
 ⁷Brookhaven National Laboratory, Upton, New York 11973 (Received 12 April 2001; published 14 August 2001)

A silicon crystal was used to channel and extract 70 GeV protons from the U-70 accelerator with an efficiency of $85.3 \pm 2.8\%$, as measured for a beam of $\sim 10^{12}$ protons directed towards crystals of ~ 2 mm length in spills of ~ 2 s duration. The experimental data follow very well the prediction of Monte Carlo simulations. This demonstration is important in devising a more efficient use of the U-70 accelerator in Protvino and provides crucial support for implementing crystal-assisted slow extraction and collimation in other machines, such as the Tevatron, RHIC, the AGS, the SNS, COSY, and the LHC.

DOI: 10.1103/PhysRevLett.87.094802

PACS numbers: 41.85.-p

Two examples of bent short crystals

O-shaped crystals 3+5 mm long

Saddle shaped crystals $0.5 \times 2 \times 50 \text{ mm}^3$. The saddle shape is induced by anticlastic forces

INTAS 00-132: short crystals (2001)

- ◆ Efficiency predicted in a perfect strip crystal with 0.9 mrad bending (" ")
- ♦ Efficiency measured using 70 GeV protons in IHEP U-70 (" ☆ □ ⊕ ")
- Crystal bending angle varied from 0.8 to 1.7 mrad

Measured efficiency of about 85 % for 2 mm long crystals (largest ever)

INTAS 03-51-6155: extraction efficiency (2003)

Channeling efficiency computed as a function of the crystal length along the LHC beam: at flattop 7 TeV and at injection 450GeV The chosen bending angle is 0.2mrad.	Channeling efficiency computed as a function of the crystal bending angle. Silicon crystal (110) with a 1µm thick rough surface.
--	---

RHIC crystal collimation (2001/05)

- Indirect experiment (measure particles disappearance) with Au and p runs
- Si crystal 5×1 mm with θ_B =465 mrad located in interaction region matching section
- Positioning not optimal (large beam divergence and $\alpha \neq 0$)
- Crystal bends in the same plane where it scrapes \Rightarrow sensitivity to horiz. halo

No clear interpretation of the results!

- Measured ch. efficiency (~25%) doesn't match theoretical predictions (56% with nominal machine optics). Better agreement and consistency when using measured beam divergence [] need accurate knowledge of lattice functions.
- Multipass physics and halo distribution models too simplistic?
- Low channelling efficiency \Rightarrow collimation not successful & increased backgrounds !!

<u>Using the crystal</u>, the secondary collimator EO3 can remain further (-1 mm or so) from the beam and achieve almost <u>a factor of 2</u> better result!

Multi stage collimation as in LHC

□ The halo particles are removed by a cascade of amorphous targets:

- 1. Primary and secondary collimators intercept the diffusive primary halo.
- 2. Particles are repeatedly deflected by Multiple Coulomb Scattering also producing hadronic showers that is the secondary halo
- 3. Particles are finally stopped in the absorber
- 4. Masks protect the sensitive devices from tertiary halo

□ Collimation efficiency in LHC \cong 99.98% @ 3.5 TeV

- Probably not enough in view of a luminosity upgrade
- Basic limitation of the amorphous collimation system

p: single diffractive scattering
 ions: fragmentation and EM dissociation

Crystal assisted collimation

- Bent crystals work as a "smart deflectors" on primary halo particles
- Coherent particle-crystal interactions impart large deflection angle that minimize the escaping particle rate and improve the collimation efficiency

Crystals to assist collimation

Quasimosaic crystal

- Bent along (111) planes
- Minimal length a few tenths of mm
- Non-equidistant planes d1/d2 = 3

Strip crystal

- 🗆 Bent along (110) planes
- \square Minimal length ~ 1 mm

□ SPS at 120 270 GeV) 1 2 mm length, 150 170 µrad angle

Equidistant planes

Crystals

- Dislocation-free silicon crystals plates or strips
- for optimal channeling efficiency
 - ✓ short length (few mm)
 - ✓ moderate bending radius 45 70 m □ LHC 3 5 mm length, 40 60 µrad angle
- D Mechanical holders with large C-shape frame imparting the main crystal curvature
 - ✓ Strip crystal: (110) planes are bent by anticlastic forces
 - ✓ Quasimosaic crystal: (111) planes are bent by 3-D anticlastic forces through the elasticity tensor
- □ Expected crystal defects:
 - ✓ Miscut: can be ≈100 µrad, but negligible effect if good orientation is applied
 - ✓ Torsion: can be reduced down to 1 µrad/mm → UA9 data in the SPS North Area
 - ✓ Imperfection of the crystal surface: amorphous layer size \le 1 µm

Coherent interactions in bent crystals

□ Two coherent effects could be used for crystal collimation: W. Scandale et al, PRL 98, 154801 (2007)

- → larger deflection with reduced efficiency
- \checkmark Volume Reflection (VR) \rightarrow smaller deflection with larger efficiency

Channeling

 \checkmark

SHORT CRYSTALS in channeling mode are preferred Methods

W. Scandale et al., Nucl. Inst. and Methods B 268 (2010) 2655-2659.

5 less inelastic interaction than in VR or in amorphous orientation (single hit of 400 GeV protons)

Goniometer

The critical angle governs the acceptance for crystal channeling

- □ 120 GeV → θ_c = 20 µrad
- □ 450 GeV → θ_c = 10 µrad
- \Box 7 TeV $\rightarrow \theta_c$ = 2.5 µrad

Required goniometer accuracy

 $Q_c = \sqrt{\frac{2U_0}{F}}$

□ δθ = 10 µrad for E ≤ 450 GeV
 □ δθ = 1÷2 µrad at LHC collision

IHEP goniometer providing $\delta \theta$ = 10 µrad

Upgrade of the goniometer launched in view of application to LHC

Observables in the collimation area:

- Intensity, profile and angle of the deflected beam
- Local rate of inelastic interactions
- Channeling efficiency (with multi-turn effect)

Observables in the high-D area:

- Off-momentum halo population escaping from collimation (with multi-turn effect)
- Off-momentum beam tails

pixel number

- Intensity, profile and angle of the deflected beam
- Efficiency of channeling (with multi-turn effect) (needs information on circulating beam current)

Radiation hardness

Test of power deposit at IHEP U-70 (Biryukov et al, NIMB 234, 23-30)

- 70 GeV protons hitting a 5 mm long si-crystal for several minutes
- □ Hit rate: 10¹⁴ protons in 50 ms, every 9.6 s
- The channeling efficiency was unchanged

Equivalent in LHC to the instant dump of 2 nominal bunches per turn for 500 turns every ~ 10 s.

Test of radiation damages at NA48 (Biino et al, CERN-SL-96-30-EA)

- □ 450 GeV protons hitting a $10 \times 50 \times 0.9$ mm³ si-crystal for one year
- □ Hit rate: 5 10¹² protons over 2.4 s every 14.4 s
- □ Total flux: 2.4 10^{20} p/cm² over an area of 0.8 x 0.3 mm²
- The channeling efficiency over the irradiate area was reduced by ~30%

LHC loss density 0.5 10^{20} p/cm² per year

- □ 3 10¹⁴ stored protons per fill and per ring
- \Box (assume 200 fills per year and $\frac{1}{3}$ of the current lost in 4 collimators)
- □ 0.25 10¹⁴ protons lost per crystal
- □ Area of the irradiated crystal 1mm 10µm

Figure 5 *A fit using the inverted irradiation profile to the measured points at expected optimum alignment*

Summary

The SPS tests on crystal assisted collimation at have shown that

- The procedure for crystal channeling is robust, fast and well reproducible
 - \checkmark The crystal and the absorber are positioned at the beam peripheral
 - \checkmark The absorber is retracted by 2 3 σ to allow multi-turn extraction of the halo
 - \checkmark The crystal is very precisely oriented in channeling mode using BLM signals
- □ In channeling states the benefits are threefold
 - Most of the halo population is promptly deflected towards the absorber
 - ✓ The rate of the nuclear interaction at the crystal is strongly reduced
 - The population of the self-generated off-momentum halo decreases
- The crystal technology is fully mature to meet requirements of larger hadron colliders such as the LHC

UA9 is being extended in LHC