# Saturation Physics

Javier L Albacete IPN Orsay

Fall meeting of the GDR PH-QCD: nucleon and nucleus structure studies with a LHC fixed-target experiment and electron-ion colliders, Oct 2011, IPN Orsay

## OUTLINE

- Brief theory introduction
- Phenomenology:





The Color Glass Condensate:

 $\label{eq:linear} \mbox{1 High gluon densities} \sim \mbox{Strong classical fields:} \qquad \mathcal{A}(k \lesssim Q_s) \sim \frac{1}{g}$ 



The Color Glass Condensate:

1 High gluon densities ~ Strong classical fields:  $\mathcal{A}(\mathbf{k} \lesssim \mathbf{Q_s}) \sim rac{1}{g}$ 2 Non-linear quantum evolution (BK-JIMWLK equations).  $\mathbf{Q_s^2}(\mathbf{x}) \sim \mathbf{x}^{-\lambda}$ 

4



The Color Glass Condensate:

1 High gluon densities ~ Strong classical fields:  $\mathcal{A}(\mathbf{k} \lesssim \mathbf{Q_s}) \sim rac{1}{g}$ 2 Non-linear quantum evolution (BK-JIMWLK equations).  $\mathbf{Q_s^2}(\mathbf{x}) \sim \mathbf{x}^{-\lambda}$ 

5



#### The Color Glass Condensate:

1 High gluon densities ~ Strong classical fields:  $\mathcal{A}(\mathbf{k} \lesssim \mathbf{Q_s}) \sim \frac{1}{g}$ 2 Non-linear quantum evolution (BK-JIMWLK equations).  $\mathbf{Q_s^2}(\mathbf{x}) \sim \mathbf{x}^{-\lambda}$ 3 Rearrangement of perturbation series due to the presence strong fields Evolution kernel: known up to full NLO accuracy. In practice BK with running coupling is used







Running coupling corrections render evolution speed compatible with data!



- Are saturation effects relevant in present high energy experiments?
- Compelling indications from a variety of colliding systems:



ALL heavy ion phenomenology borrows information from electron-proton data!

#### The Color Glass Condensate: Phenomenology tools

1 INITIAL CONDITIONS: First principles calculation (MV model) or empirical determination of small-x component of hadronic wave functions at some initial scale  $x_0$ 

$$\phi(\mathbf{x_0}, \mathbf{k_t}, \mathbf{b}) = \mathrm{FT} \left[ \mathbf{1} - \frac{\mathbf{1}}{\mathbf{N_c}} \left\langle \mathrm{tr} \left( \mathbf{U}(\mathbf{z_1}) \mathbf{U^{\dagger}}(\mathbf{z_2}) \right) \right\rangle_{\mathbf{x_0}} \right]$$

unintegrated gluon distr. ~ 2-point (dipole) amplitude



$$\phi_{\mathbf{x_0}}^{\mathbf{n}} \sim \operatorname{tr} \left( \mathbf{U}(\mathbf{z_1}) \dots \mathbf{U}^{\dagger}(\mathbf{z_n}) \right)_{\mathbf{x_0}}$$

complete description: all n-point functions

2 SMALL-X EVOLUTION: Non-linear quantum BK-JIMWLK evolution equations. Predictive power is here!!!

 $\frac{\partial \phi(\mathbf{x}, \mathbf{k_t}, \mathbf{b})}{\partial \ln(\mathbf{x_0}/\mathbf{x})} \approx \mathcal{K} \otimes \phi(\mathbf{x}, \mathbf{k_t}, \mathbf{b}) - \frac{\phi(\mathbf{x}, \mathbf{k_t}, \mathbf{b})^2}{\text{radiation}}$ 

**BK:** evolution of the 2-point function

JIMWLK: (coupled) evolution of all n-point functions

Evolution kernels K known to NLO accuracy. In practice running coupling BK is used. First steps of phenomenological implementation of JIMWLK very recent.

**3 PARTICLE PRODUCTION:** 



Factorization theorems only hold for certain, very inclusive observables Most processes calculated only to LO accuracy Fits to e+p data: Global fits to structure functions and reduced x-section based on the use of running coupling BK equation provide a very good description of data



$$\sigma_{T,L}^{\gamma^* P}(x,Q^2) = \int_0^1 dz \int d^2 \mathbf{r} \left| \Psi_{T,L}^{\gamma^* \to q\bar{q}}(z,Q,r) \right|^2 \sigma^{dip}(x,r)$$

 $\sigma^{dip}(x,r) = 2 \int d^2b \, \mathcal{N}(x,b,r) \rightarrow \begin{array}{l} \text{Dipole cross section.} \\ \text{Strong interactions and } \textbf{x-dependence are} \\ \text{here. Evolved with running coupling BK} \end{array}$ 

Fit parameters: initial condition for the evolution:

JLA-Armesto-Milhano, Quiroga-Salgado; Kuokkanen-Rumukainen-Weigert; Gonzalves et. al.

$$\mathcal{N}^{MV}(r, x_0 = 10^{-2}) = 1 - \exp\left[-\left(\frac{r^2 Q_{s0}^2}{4}\right)^{\gamma} \ln\left(\frac{1}{r \Lambda_{QCD}}\right)\right]$$
$$\phi(\mathbf{x_0}, \mathbf{k_t}) = F.T[\mathcal{N}(x_0, r)]$$

Fits to e+p data: Global fits to structure functions and reduced x-section based on the use of running coupling BK equation provide a very good description of data



$$\sigma_{T,L}^{\gamma^* P}(x,Q^2) = \int_0^1 dz \int d^2 \mathbf{r} \left| \Psi_{T,L}^{\gamma^* \to q\bar{q}}(z,Q,r) \right|^2 \sigma^{dip}(x,r)$$

 $\sigma^{dip}(x,r) = 2 \int d^2b \, \mathcal{N}(x,b,r) \rightarrow \begin{array}{l} \text{Dipole cross section.} \\ \text{Strong interactions and } \textbf{x-dependence are} \\ \text{here. Evolved with running coupling BK} \end{array}$ 

JLA-Armesto-Milhano, Quiroga-Salgado; Kuokkanen-Rumukainen-Weigert; Gonzalves et. al.





### Fits to e+p data:



Comparison with data into a kinematic region excluded from the fits: The non-linear rcBK approach is more stable than NLO DGLAP at small  $(x,Q^2)$ .

JLA, Milhano, Quiroga, Rojo (in preparation)







How to deal with b-dependence? Building nuclei from nucleons:

$$\phi^{\mathbf{A}}(\mathbf{x}, \mathbf{k_t}, \mathbf{B}) = \phi^{\mathbf{p}}(\mathbf{x}, \mathbf{k_t}, \mathbf{Q_{sp}^2} \to \mathbf{Q_{sA}^2}(\mathbf{B}))$$

1. Trivial: 
$$ar{\mathbf{Q}}_{\mathbf{s}}^{\mathbf{2},\mathbf{A}} \sim \mathbf{A}^{\mathbf{1/3}} \, \mathbf{Q}_{\mathbf{s}}^{\mathbf{2},\mathbf{N}}$$

2. Mean field: 
$$\mathbf{Q_s^{2,A}(B)} \sim \mathbf{T_A(B)} \mathbf{Q_s^{2,N}}$$

3. Monte Carlo (realistic i.c for heavy ion collisions)

a). Initial conditions for the evolution (x=0.01)

$$N(\mathbf{R}) = \sum_{i=1}^{A} \Theta\left(\sqrt{\frac{\sigma_0}{\pi}} - |\mathbf{R} - \mathbf{r_i}|\right) \longrightarrow Q_{s0}^2(\mathbf{R}) = N(\mathbf{R}) Q_{s0, \text{nucl}}^2$$
  
b) Solve local rcBK evolution  
at each transverse point 
$$\varphi(x_0 = 0.01, k_t, R)$$
  
rcBK equation  
or KLN model  
 $\varphi(x, k, R)$ 

Nucleons can be regarded as disks () or gaussian () or ...

Is using the same functional form for proton and nuclei u.g.d a good idea? Is diffusion in the transverse plane negligible?

## Forward suppression in p(d)-A collisions:

Forward (i.e x<0.01) RHIC suppression well described by rcBK CGC calculations.



Measurements very close to the kinematic limit (K-factor ~ 0.3 for forward pions?) Are large-x energy loss effects (not included in the CGC) the cause of the suppression?



Probability of not losing energy:  $P(\Delta y) \approx e^{-n_G(\Delta y)} \approx (1 - x_F)^{\#}$ Kopeliovich et al

### Forward suppression in p(d)-A collisions:

Forward (i.e x<0.01) RHIC suppression well described by rcBK CGC calculations.



Are large-x energy loss effects (not included in the CGC) the cause of the suppression? Measurements very close to the kinematic limit (K-factor ~ 0.3 for forward pions?) Related R<sub>pPb</sub> measurement at the LHC may clarify the origin of RHIC forward suppression, though large systematics uncertainties from poor knowledge of initial conditions

#### suppression of forward di-hadron correlations in d-Au collisions:

$$x_{p} = \frac{|k_{1}|e^{y_{1}} + |k_{2}|e^{y_{2}}}{\sqrt{s}}$$

$$x_{A} = \frac{|k_{1}|e^{-y_{1}} + |k_{2}|e^{-y_{2}}}{\sqrt{s}}$$

$$(k_{1}, y_{1}), (k_{2}, y_{2})$$

$$x_{A} = \frac{|k_{1}|e^{-y_{1}} + |k_{2}|e^{-y_{2}}}{\sqrt{s}}$$

$$(k_{1}, y_{1}), (k_{2}, y_{2})$$

$$(k_{1}, y_{1}), (k_{2}, y_{$$

 $z = \frac{|k_{\perp}|e^{y_k}}{|k_{\perp}|e^{y_k} + |q_{\perp}|e^{y_q}}$  Involves more than 3 and 4 point functions. Calculated in the large Nc limit

### suppression of forward di-hadron correlations in d-Au collisions:

Presence of "monojets" well explained qualitative and quantitatively by the presence of a dynamical, semi-hard saturation scale:



Knowledge of 4 and 6 point correlators needed (i.e solving JIMWLK):

Inclusion of gluon channel recently carried out by Stasto et al.

Dumitru et al (numerically) Iancu -Triantafyllopoulos (analytically)

Dominance of double parton interactions ruled out by neutron-tagged measurements by STAR

## Initial gluon production in heavy ion collisions



## CGC Monte Carlo: MC-KLN and rcBK



- kt-factorization + running coupling BK evolution [JLA-Dumitru-Nara]  $\frac{d\sigma^{A+B\rightarrow g}}{dy \, d^2 p_t \, d^2 R} = \kappa \frac{2}{C_F} \frac{1}{p_t^2} \int^{p_t} \frac{d^2 k_t}{4} \int d^2 b \, \alpha_s(Q) \, \varphi(\frac{|p_t + k_t|}{2}, x_1; b) \, \varphi(\frac{|p_t - k_t|}{2}, x_2; R - b)$   $\frac{dN^{A+B\rightarrow g}}{dy \, d^2 p_t \, d^2 R} = \frac{1}{\sigma_s} \frac{d\sigma^{A+B\rightarrow g}}{dy \, d^2 p_t \, d^2 R}$ 

## LHC data and rcBK CGC Monte Carlo



- kt-factorization + running coupling BK evolution [JLA-Dumitru-Nara]  $\frac{d\sigma^{A+B\rightarrow g}}{dy \, d^2 p_t \, d^2 R} = \kappa \frac{2}{C_F} \frac{1}{p_t^2} \int^{p_t} \frac{d^2 k_t}{4} \int d^2 b \, \alpha_s(Q) \, \varphi(\frac{|p_t + k_t|}{2}, x_1; b) \, \varphi(\frac{|p_t - k_t|}{2}, x_2; R - b)$   $\frac{dN^{A+B\rightarrow g}}{dy \, d^2 p_t \, d^2 R} = \frac{1}{\sigma_s} \frac{d\sigma^{A+B\rightarrow g}}{dy \, d^2 p_t \, d^2 R}$ 



NOTE: rcBK Monte Carlo is built as an upgrade of MC-KLN, by Drescher and Nara

Sensitivity of MC-CGC models for the initial state of HIC to high-kt uncertainties

Reminder: e+p, d+Au and Pb+Pb (multiplicities) data are compatible with u.g.d with rather different high-kt behavior: decreasing x 10 Vγ=1.119 10 E2) MV i.c 10 10 k<sub>t</sub>(GeV/c) 10

Sensitivity of MC-CGC models for the initial state of HIC to high-kt uncertainties



These uncertainties translate to the extraction of transport coefficients (shear viscosity...) when these model are used as i.c. for hydro evolution

# Initial state anisotropy

v2 measurements can be accommodated both for Glauber and MC-CGC i.c

higher harmonics: v3. "Current CGC-MC underestimate initial state fluctuations"



#### v<sub>3</sub> described only by Glauber



#### WARNING!!

- Not clear to what extent such difference is rooted in the use of kt-factorization
- Initial anisotropies very sensitive to particle production in the (dilute) periphery
- Some differences arise due to implementation details: nucleon size, nucleon spread, sources of fluctuations etc...

# **Conclusions / Outlook**

- Important steps have been taken in promoting GCG to an useful quantitative tool
  - Theoretical calculation of higher order corrections (running coupling)
  - Phenomenological effort to systematically describe data from different systems (e+p, e+A, p+p, d+Au, Aa+Au and Pb+Pb) in an unified framework
  - Devise & maintenance of Monte Carlo methods to input hydro/transport calculation
  - -... but more work is still needed!
- First HI LHC data on multiplicities compatible with CGC models
- ✓ Most urgent tasks:
  - Putting together b-dependence and evolution
  - Matching with high-x, high-Q<sup>2</sup> physics (valence quarks ,DGLAP evolution)
  - Improve non-perturbative modeling in MC-CGC
- A p+Pb run would be extremely useful for the calibration of initial-state effects for hard probes, but also to further constrain models for bulk particle production

# THANK YOU!!

# The thermalization conundrum



The energy-momentum tensor after the collision is maximally anisotropic:

 $T_{LO}^{\mu\nu} = \operatorname{diag}\left(\epsilon, \epsilon, \epsilon, -\epsilon\right) \quad \tau = \mathbf{0}^+$ 

 $T_{iso}^{\mu\nu} = \operatorname{diag}\left(\epsilon, p, p, p\right) \qquad \tau_{th} \sim 1 \,\mathrm{fm/c}$ 

How does the transition to an (quasi) isotropic EMT happen over such short times?

#### CGC/ weak coupling approaches:

Bottom-up approach: large estimates of thermalization time [Baier et al] Resummation of Feynmann diagrams leads to free streaming (pz=0) [Kovchegov] Resummation of unstable secular terms may speed up the thermalization dynamics [Romatchske-Venugopalan, Dusling et al]

Strong coupling? AdS/CFT studies suggest a rapid thermalization Chesler-Yaffe, Lin-Shuryak, Mue, JLA-Kovchegov-Taliotis, Balasubramanian et al] How to match them with weak coupling/CGC at earlier times?

No conclusive proof of thermalization yet...the elephant remains in the room

# The thermalization conundrum



The energy-momentum tensor after the collision is maximally anisotropic:

 $T_{LO}^{\mu\nu} = \operatorname{diag}\left(\epsilon, \epsilon, \epsilon, -\epsilon\right) \quad \tau = \mathbf{0}^+$ 

 $T_{iso}^{\mu\nu} = \operatorname{diag}\left(\epsilon, p, p, p\right) \qquad \tau_{th} \sim 1 \,\mathrm{fm/c}$ 

How does the transition to an (quasi) isotropic EMT happen over such short times?

#### CGC/ weak coupling approaches:

Bottom-up approach: large estimates of thermalization time [Baier et al] Resummation of Feynmann diagrams leads to free streaming (pz=0) [Kovchegov] Resummation of unstable secular terms may speed up the thermalization dynamics [Romatchske-Venugopalan, Dusling et al]

Strong coupling? AdS/CFT studies suggest a rapid thermalization Chesler-Yaffe, Lin-Shuryak, Mue, JLA-Kovchegov-Taliotis, Balasubramanian et al] How to match them with weak coupling/CGC at earlier times?

No conclusive proof of thermalization yet...the elephant remains in the room

# CGC at very early times

Solution of classical Yang-Mills EOM: (A+A): Electric and magnetic fields are longitudinal:



Imply the presence of long-range in rapidity correlations, which must be generated at early times.

Several attempts to describe current correlation data based on CGC+ radial flow exist [Gavin, McLerran, Dusling et al]

...however, phenomenological description of the demands accounting for flow effects triggered by initial state fluctuations

## CGC Monte Carlo: MC-KLN and rcBK



1. Initial conditions for the evolution (x=0.01)

$$N(\mathbf{R}) = \sum_{i=1}^{A} \Theta \left( \sqrt{\frac{\sigma_0}{\pi}} - |\mathbf{R} - \mathbf{r_i}| \right) \longrightarrow Q_{s0}^2(\mathbf{R}) = N(\mathbf{R}) Q_{s0,\text{nucl}}^2$$
$$\varphi(x_0 = 0.01, k_t, \mathbf{R})$$

2. Solve local running coupling BK evolution at each transverse point

 $\varphi(x, k, R)$ 



**3** Calculate gluon production at each transverse point according to kt-factorization

INPUT:  $\varphi(\mathbf{x} = \mathbf{0.01}, \mathbf{k_t})$  FOR A SINGLE NUCLEON:

NOTE: rcBK Monte Carlo is built as an upgrade of MC-KLN, by Drescher and Nara