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OUTLINE

• Brief theory introduction

electron-proton (HERA)

proton-proton (RHIC, LHC)

proton(d)-nucleus (RHIC)

nucleus-nucleus (RHIC, LHC)

• Phenomenology: 
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Saturation: The small-x component of any energetic hadron is governed by high gluon densities 

The Color Glass Condensate:

1 High gluon densities ~ Strong classical fields: A(k ! Qs) ∼
1
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“BK-JIMWLK”

Non-linear recombination corrections 
are demanded by UNITARITY 

∂φ(x,kt)
∂ ln(x0/x)

≈ K ⊗ φ(x,kt)− φ(x,kt)2

Saturation: The small-x component of any energetic hadron is governed by high gluon densities 

The Color Glass Condensate:

1 High gluon densities ~ Strong classical fields: A(k ! Qs) ∼
1
g

2 Non-linear quantum evolution (BK-JIMWLK equations). Q2
s (x) ∼ x−λ
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Saturation: The small-x component of any energetic hadron is governed by high gluon densities 

The Color Glass Condensate:

gA ∼ O(1)

1 High gluon densities ~ Strong classical fields: A(k ! Qs) ∼
1
g

2 Non-linear quantum evolution (BK-JIMWLK equations). Q2
s (x) ∼ x−λ

3 Rearrangement of perturbation series due to the presence strong fields 
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Evolution kernel: known up to  full NLO accuracy. In practice BK with running coupling is used 

∂φ(x,kt)
∂ ln(x0/x)

≈ K ⊗ φ(x,kt)− φ(x,kt)2

radiation recombination
“BK-JIMWLK”

       LO: αs ln(1/x)
small-x gluon emission

    NLO Running coupling

kt ! Qs(x)Saturation of gluons with: 

decreasing x

Running coupling corrections render 
evolution speed compatible with data!

Fits to
DIS
HIC

[Balitsky, , Gardi et at],
Kovchegov-Weigert
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• Are saturation effects relevant in present high energy experiments?

electron-proton (HERA)

proton-proton (RHIC, LHC)

proton(d)-nucleus (RHIC)

nucleus-nucleus (RHIC, LHC)

ALL heavy ion phenomenology borrows information from electron-proton data!

• Compelling indications from a variety of colliding systems:
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The Color Glass Condensate: Phenomenology tools

1 INITIAL CONDITIONS: First principles calculation (MV model) or empirical determination of small-x 
component of hadronic wave functions at some initial scale x0  

unintegrated gluon distr. ~ 2-point (dipole) amplitude complete description: all n-point functions

φ(x0,kt,b) = FT
[
1− 1

Nc
〈tr

(
U(z1)U†(z2)

)
〉
x0

]
φn
x0
∼ tr

(
U(z1) . . .U†(zn)

)
x0

z1

z2

z1

zn

..

.

2 SMALL-X EVOLUTION: Non-linear quantum BK-JIMWLK evolution equations. Predictive power is here!!!  

radiation recombination

∂φ(x,kt,b)
∂ ln(x0/x)

≈ K ⊗ φ(x,kt,b)− φ(x,kt,b)2 BK: evolution of the 2-point function
JIMWLK: (coupled) evolution of all n-point functions

Evolution kernels K known to NLO accuracy. In practice running coupling BK is used. 
First steps of phenomenological implementation of JIMWLK very recent.

3 PARTICLE PRODUCTION: 〈O〉
[
φ2, . . . ,φn

]

Factorization theorems only hold for certain, very inclusive observables
Most processes calculated only to LO accuracy
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Fits to e+p data: Global fits to structure functions and reduced x-section based on the 
use of running coupling BK equation provide a very good description of data

JLA-Armesto-Milhano, Quiroga-Salgado; 
Kuokkanen-Rumukainen-Weigert; 
Gonzalves et. al.

φ(x0,kt) = F.T[N (x0, r)]

NMV (r, x0 = 10−2) = 1− exp
[
−

(
r2 Q2

s0

4

)γ

ln
(

1
r ΛQCD

)]

Dipole cross section. 
Strong interactions and  x-dependence are 
here. Evolved with running coupling BK

σdip(x, r) = 2
∫

d2bN (x, b, r)

x

q

q

P

γ∗

y
r

q

q̄
b

γ∗ , Q2

σγ∗ P
T,L (x,Q2)=

∫ 1

0
dz

∫
d2r

∣∣∣Ψγ∗→qq̄
T,L (z,Q, r)

∣∣∣
2
σdip(x, r)

Fit parameters: initial condition for the evolution:
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Fits to e+p data: Global fits to structure functions and reduced x-section based on the 
use of running coupling BK equation provide a very good description of data
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Fits to e+p data: 

JLA, Milhano, Quiroga, Rojo (in preparation)
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Comparison with data into a kinematic region excluded
from the fits: The non-linear rcBK approach is more 
stable than NLO DGLAP at small (x,Q2).

superseeded by NNLO DGLAP fits!!
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How to deal with b-dependence? Building nuclei from nucleons: 

Q2,A
s (B) ∼ TA(B)Q2,N

s

Q̄2,A
s ∼ A1/3 Q2,N

s1. Trivial: 

2. Mean field: 

3. Monte Carlo  (realistic i.c for heavy ion collisions) × R
a). Initial conditions for the evolution (x=0.01)

where Λ = 0.241 GeV. This introduces two free parameters: the value x0 where the evolution
starts and the initial saturation scale Qs0(R) at the transverse coordinate R; it measures the local
density of large-x sources at a fixed point in impact parameter space (i.e., in the transverse plane).

As explained in more detail below, the geometry of a given A+A collision is determined by the
fluctuations in the positions of the nucleons in the transverse plane. Each configuration defines a
different local density in the transverse plane of each nucleus. Obviously, the smallest non-zero
local density corresponds to the presence of a single nucleon. The corresponding value of Qs0 is
constrained by phenomenological analyses of e+p2 and p+p data in [11] and [13]. This results
in a central value Q2

s0 ≈ 0.2 GeV 2 for x0 ≈ 0.01. On the other hand, in A+A collisions rare
fluctuations can result in collisions of a large number of nucleons at the same transverse position
and, therefore, in a large Qs0. To account for all possible configurations we tabulate the solution
of the rcBK equation for different values of the initial local density, i.e., for each value of Qs0 in
Eq. (4) ranging from 0.2 GeV2 to 5 GeV2 in bins of 0.1 GeV2. The solutions are then used in
the kt-factorization formula to calculate local gluon production at each point in the collision zone.
Finally we perform the average over all the nucleon configurations generated by the Monte Carlo.

To complete our discussion of the initial conditions we explain how we construct Qs0(R).
We first generate a configuration of nucleons for each of the colliding nuclei. This consists of
a list of random coordinates ri, i = 1 . . . A, chosen from a Woods-Saxon distribution. Multi-
nucleon correlations are neglected except for imposing a short-distance hard core repulsion which
enforces a minimal distance ≈ 0.4 fm between any two nucleons. After this step, the longitudinal
coordinate of any nucleon is discarded, they are projected onto the transverse plane. Factorizing
the fluctuations of the nucleons in a nucleus from possible fluctuations of large-x “hot spots”
within a nucleon (not accounted for at present), and finally from semi-hard gluon production
appears to be justified by the scale hierarchy

1

Qs

" RN " RA , (5)

where RA, RN are the radii of a nucleus and of a proton, respectively.
For a given configuration, the initial saturation momentumQs0(R) at the transverse coordinate

R is taken to be
Q2

s0(R) = N(R)Q2
s0,nucl , (6)

where Q2
s0, nucl = 0.2 GeV2, as discussed above, and where N(R) is the number of nucleons from

the given nucleus which “overlap” the point R:

N(R) =
A
∑

i=1

Θ

(
√

σ0

π
− |R− ri|

)

. (7)

Some care must be exercised in choosing the transverse area σ0 of the large-x partons of a nucleon.
Qs0 corresponds to the density of large-x sources with x > x0 and should therefore be energy
independent (recoil of the sources is neglected in the small-x approximation). We therefore take
σ0 $ 42 mb to be given by the inelastic cross-section at

√
s = 200 GeV. However, σ0 should not

be confused with the energy dependent inelastic cross section σin(s) of a nucleon which grows due
to the emission of small-x gluons.

2Note that the initial conditions in that work were slightly different since they included an anomalous dimension
γ > 1 (while γ = 1 for the MV i.c.).
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3

b) Solve local rcBK evolution 
     at each transverse point rcBK equation

or KLN model

ϕ(x0 = 0.01, kt, R)

ϕ(x, k�, R)

Is using the same functional form for proton and nuclei u.g.d a good idea?
Is diffusion in the transverse plane negligible?

Nucleons can be regarded as disks (    )  or gaussian  (   )  or ...

φA(x,kt,B) = φp(x,kt,Q2
sp → Q2

sA(B))
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Forward (i.e x<0.01) RHIC suppression well described by rcBK CGC calculations. 
Forward suppression in p(d)-A collisions:

Are large-x energy loss effects (not included in the CGC) the cause of the suppression?
Measurements very close to the kinematic limit (K-factor ~ 0.3 for forward pions?)

pdf(x1,kt)⊗ φ(x2,kt) x1(2) ∼
mt√

s
exp(± yh)
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Figure 1. Comparison of forward hadron spectra computed with the AAMQS set h
(solid) and rcMV (dashed) to the data observed at RHIC. The K factor is chosen as
K = 1.5 for charged particles (h−) and K = 0.5 for π0 in pp and d-Au collisions.

solutions for the rcBK equation with different initial values of Q2
s0. Such an approach

has been pursued within the so-called k⊥ factorization approximation for AA collisions,

which reproduces successfully the centrality dependence of the hadron multiplicity at
RHIC and the LHC[15, 10, 11].

Here we combine the DHJ formula with the rcBK evolution in the MC

implementation (MC-DHJ/rcBK). That is, we compute particle productions at each

transverse grid r⊥ using the DHJ formula (3) with Ñ (k, y) numerically obtained from

Q2
s0 at grid r⊥ determined by the MC code:

dN

dyhd2pTdr⊥

= Td(r⊥)×
dN

dyhd2pT

∣∣∣∣
DHJ r⊥

. (4)

Here Td(r⊥) is the thickness function on the dilute side. We stress as an advantage of
this approach that there is no more additional parameter after fitting pp collisions. We

comment also that the MC implementation allows us to study the initial fluctuations[15].

3. Results

We use for fi/p and Dh/i the CTEQ6M NLO PDF [16] and DSS NLO fragmentation
functions [17], respectively, and set the factorization scale to µ2 = p2T . We remark that

an oscillation appears in Ñ(k, y) for smaller Q2
s0 when a sharp cutoff for the running

coupling αs(r) = 1/[b0 ln(4C2/r2Λ2)] is adopted at αfr. Thus we tried a smooth cutoff

αs(r) = 1/[b0 ln(4C2/r2Λ2) + a] where constant a is adjusted to make αs(r) → 2 as

r → ∞ in the rcBK evolution in the case of the rcMV initial condition.

In figure 1, transverse momentum distributions of negatively charged hadrons
h− at pseudo-rapidities η = 2.2 and 3.2 from BRAHMS [18] and neutral pions

π0 at η = 4 from STAR [19] in pp and d-Au collisions at
√
s = 200 GeV

are compared to our results. The AAMQS set h with K = 1.5 (0.5) describes

the forward particle multiplicities of h− (π0) very nicely in pp and d-Au collisions

single inclusive yields in dAu

JLA-MarquetFujii-Itakura-Kitadono-Nara

Kopeliovich et al
P (∆y) ≈ e−nG(∆y) ≈ (1− xF )#

x1 → 1
Probability of not losing energy: 
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solutions for the rcBK equation with different initial values of Q2
s0. Such an approach

has been pursued within the so-called k⊥ factorization approximation for AA collisions,

which reproduces successfully the centrality dependence of the hadron multiplicity at
RHIC and the LHC[15, 10, 11].

Here we combine the DHJ formula with the rcBK evolution in the MC

implementation (MC-DHJ/rcBK). That is, we compute particle productions at each

transverse grid r⊥ using the DHJ formula (3) with Ñ (k, y) numerically obtained from

Q2
s0 at grid r⊥ determined by the MC code:

dN

dyhd2pTdr⊥

= Td(r⊥)×
dN

dyhd2pT

∣∣∣∣
DHJ r⊥

. (4)

Here Td(r⊥) is the thickness function on the dilute side. We stress as an advantage of
this approach that there is no more additional parameter after fitting pp collisions. We

comment also that the MC implementation allows us to study the initial fluctuations[15].

3. Results

We use for fi/p and Dh/i the CTEQ6M NLO PDF [16] and DSS NLO fragmentation
functions [17], respectively, and set the factorization scale to µ2 = p2T . We remark that

an oscillation appears in Ñ(k, y) for smaller Q2
s0 when a sharp cutoff for the running

coupling αs(r) = 1/[b0 ln(4C2/r2Λ2)] is adopted at αfr. Thus we tried a smooth cutoff

αs(r) = 1/[b0 ln(4C2/r2Λ2) + a] where constant a is adjusted to make αs(r) → 2 as

r → ∞ in the rcBK evolution in the case of the rcMV initial condition.

In figure 1, transverse momentum distributions of negatively charged hadrons
h− at pseudo-rapidities η = 2.2 and 3.2 from BRAHMS [18] and neutral pions

π0 at η = 4 from STAR [19] in pp and d-Au collisions at
√
s = 200 GeV

are compared to our results. The AAMQS set h with K = 1.5 (0.5) describes

the forward particle multiplicities of h− (π0) very nicely in pp and d-Au collisions

single inclusive yields in dAu

Related RpPb measurement at the LHC may clarify the origin of RHIC forward suppression, 
though large systematics uncertainties from poor knowledge of initial conditions 

Rezaeian 
Jalilian Marian

Fujii-Itakura-Kitadono-Nara

RpPb at the LHC

LHC η=0
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16

(k1, y1), (k2, y2)
xp =

|k1|ey1 + |k2|ey2

√
s

xA =
|k1|e−y1 + |k2|e−y2

√
s

hard quark initiating scattering Fourier transfrom coordinate space to momentum

q-> qg splitting (pQCD)

Scattering of the 2-parton system with the CGC target

{
Involves more than 3 and 4 point functions. Calculated in the large Nc limit 

C. Marquet;
Dominguez et al (gluon channel)

suppression of forward di-hadron correlations in d-Au collisions:
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Presence of “monojets” well explained qualitative and quantitatively by the presence of a 
dynamical, semi-hard saturation scale:

suppression of forward di-hadron correlations in d-Au collisions:
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Knowledge of 4 and 6 point correlators needed (i.e solving JIMWLK): 

Inclusion of gluon channel recently carried out by Stasto et al.

Dominance of double parton interactions ruled out by neutron-tagged measurements by STAR
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Initial gluon production in heavy ion collisions
- Classical Yang-Mills EOM:

- kt-factorization (BK evolution)

[DµFµν ] = Jν [ρ]
(Suplemented by JIMWLK evolution) 
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FIG. 3. Charged particle pseudo-rapidity density per partic-
ipant pair for central nucleus–nucleus [16–24] and non-single
diffractive pp/pp collisions [25–31], as a function of

√
sNN.

The energy dependence can be described by s0.15NN for nucleus–
nucleus, and s0.11NN for pp/ppcollisions.

ity variables (SPD hits, or combined use of the ZDC and
VZERO signals).

We measure a density of primary charged particles
at mid-rapidity dNch/dη = 1584 ± 4 (stat.) ± 76
(sys.). Normalizing per participant pair, we obtain
dNch/dη/(0.5 〈Npart〉) = 8.3 ± 0.4 (sys.) with negligi-
ble statistical error. In Fig. 3, this value is compared
to the measurements for Au–Au and Pb–Pb, and non-
single diffractive (NSD) pp and pp collisions over a wide
range of collision energies [16–31]. The energy depen-
dence can be described by s0.11NN for pp and pp, and
by s0.15NN for nucleus–nucleus collisions. A significant in-
crease, by a factor 2.2, in the pseudo-rapidity density is
observed at

√
sNN = 2.76 TeV for Pb–Pb compared to√

sNN = 0.2 TeV for Au–Au. The average multiplicity
per participant pair for our centrality selection is found
to be a factor 1.9 higher than that for pp and pp collisions
at similar energies.

Figure 4 compares the measured pseudo-rapidity den-
sity to model calculations that describe RHIC measure-
ments at

√
sNN = 0.2 TeV, and for which predictions at√

sNN = 2.76 TeV are available. Empirical extrapolation
from lower energy data [4] significantly underpredicts the
measurement. Perturbative QCD-inspired Monte Carlo
event generators, based on the HIJING model tuned to
7 TeV pp data without jet quenching [5] or on the Dual
Parton Model [6], are consistent with the measurement.
Models based on initial-state gluon density saturation
have a range of predictions depending on the specific im-
plementation [7–11], and exhibit a varying level of agree-
ment with the measurement. The prediction of a hybrid
model based on hydrodynamics and saturation of final-
state phase space of scattered partons [12] is close to
the measurement. A hydrodynamic model in which mul-

FIG. 4. Comparison of this measurement with model predic-
tions. Dashed lines group similar theoretical approaches.

tiplicity is scaled from p+p collisions overpredicts the
measurement [13], while a model incorporating scaling
based on Landau hydrodynamics underpredicts the mea-
surement [14]. Finally, a calculation based on modified
PYTHIA and hadronic rescattering [15] underpredicts
the measurement.
In summary, we have measured the charged-particle

pseudo-rapidity density at mid-rapidity in Pb–Pb colli-
sions at

√
sNN = 2.76 TeV, for the most central 5% frac-

tion of the hadronic cross section. We find dNch/dη =
1584 ± 4 (stat.) ± 76 (sys.), corresponding to 8.3 ±
0.4 (sys.) per participant pair. These values are signif-
icantly larger than those measured at RHIC, and indi-
cate a stronger energy dependence than measured in pp
collisions. The result presented in this Letter provides
an essential constraint for models describing high energy
nucleus–nucleus collisions.
The ALICE collaboration would like to thank all its en-

gineers and technicians for their invaluable contributions
to the construction of the experiment and the CERN
accelerator teams for the outstanding performance of
the LHC complex. The ALICE collaboration acknowl-
edges the following funding agencies for their support
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de Estudos e Projetos (FINEP), Fundação de Amparo
à Pesquisa do Estado de São Paulo (FAPESP); Na-
tional Natural Science Foundation of China (NSFC), the
Chinese Ministry of Education (CMOE) and the Min-
istry of Science and Technology of China (MSTC); Min-
istry of Education and Youth of the Czech Republic;
Danish Natural Science Research Council, the Carlsberg
Foundation and the Danish National Research Founda-
tion; The European Research Council under the Eu-
ropean Community’s Seventh Framework Programme;
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Centrality dNch/dη 〈Npart〉 (dNch/dη)/
(
〈Npart〉/2

)

0–5% 1601±60 382.8±3.1 8.4±0.3
5–10% 1294±49 329.7±4.6 7.9±0.3
10–20% 966±37 260.5±4.4 7.4±0.3
20–30% 649±23 186.4±3.9 7.0±0.3
30–40% 426±15 128.9±3.3 6.6±0.3
40–50% 261±9 85.0±2.6 6.1±0.3
50–60% 149±6 52.8±2.0 5.7±0.3
60–70% 76±4 30.0±1.3 5.1±0.3
70–80% 35±2 15.8±0.6 4.4±0.4

Table 1: dNch/dη and (dNch/dη)/
(
〈Npart〉/2

)
measured in |η | < 0.5 for nine centrality classes. The 〈Npart〉

obtained with the Glauber model are given.

Fig. 2: Dependence of (dNch/dη)/
(
〈Npart〉/2

)
on the number of participants for Pb–Pb collisions at

√
sNN =

2.76 TeV and Au–Au collisions at
√

sNN = 0.2 TeV (RHIC average) [7]. The scale for the lower-energy data is
shown on the right-hand side and differs from the scale for the higher-energy data on the left-hand side by a factor
of 2.1. For the Pb–Pb data, uncorrelated uncertainties are indicated by the error bars, while correlated uncertainties
are shown as the grey band. Statistical errors are negligible. The open circles show the values obtained for centrality
classes obtained by dividing the 0–10% most central collisions into four, rather than two classes. The values for
non-single-diffractive and inelastic pp collisions are the results of interpolating between data at 2.36 [19, 23] and
7 TeV [24].

the parameters entering the Glauber calculation as described above. The geometrical 〈Npart〉 values are
consistent within uncertainties with the values extracted from the Glauber fit in each centrality class, and
agree to better than 1% except for the 70–80% class where the difference is 3.5%.

Figure 2 presents (dNch/dη)/
(
〈Npart〉/2

)
as a function of the number of participants. Point-to-point,

uncorrelated uncertainties are indicated by the error bars, while correlated uncertainties are shown as the
grey band. Statistical errors are negligible. The charged-particle density per participant pair increases
with 〈Npart〉, from 4.4±0.4 for the most peripheral to 8.4±0.3 for the most central class. The values for
Au–Au collisions at

√
sNN = 0.2 TeV, averaged over the RHIC experiments [7], are shown in the same

figure with a scale that differs by a factor of 2.1 on the right-hand side. The centrality dependence of the

LHC RHIC

dNg

dηd2b
∝ Q2

s (x,b) ∼
√

sλ Npart

- Approximate factorization of energy and centrality dependence

↵

- Gluon to hadron conversion
- Quark contribution  
- jet fragmentation
- k-factor for higher order 
 corrections
- Truly soft contribution 
- ...

Recent progress by T. Lappi

- Strong coherence effects: 
dNAA

dη
! Ncoll

dNpp

dη

DATA:
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CGC Monte Carlo: MC-KLN and rcBK 
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3 kt-factorization

According to the kt-factorization formalism [12], the number of gluons produced per unit rapidity
at a transverse position R in A+B collisions is given by

dNA+B→g

dy d2pt d2R
=

1

σs

dσA+B→g

dy d2pt d2R
, (8)

where σs represents the effective interaction area and σA+B→g is the cross section for inclusive
gluon production:

dσA+B→g

dy d2pt d2R
= κ

2

CF

1

p2
t

∫ pt d2kt

4

∫
d2b αs(Q) ϕ(

|pt + kt|
2

, x1; b) ϕ(
|pt − kt|

2
, x2; R− b) , (9)

with x1(2) = (pt/
√

sNN) exp(±y) and CF = (N2
c−1)/2Nc; the normalization factor κ is given below.

As noted before, we assume that the local density in each nucleus is homogenous over transverse
distances of the order of the nucleon radius RN . Thus, the b-integral in Eq. (9) yields a geometric
factor proportional to the transverse “area” of a nucleon which cancels with a similar factor implicit
in σs from Eq. (8), modulo subtleties in the definition of σs. In any case, uncertainties associated
with the overall normalization of Eq. (8) cancel in the calculation of the initial eccentricity in
Eq. (16).

The unintegrated gluon distributions (ugd’s) ϕ entering Eq. (9) are related to the dipole scat-
tering amplitude in the adjoint representation, NG, through a Fourier transform (for consistency
with the notation used in Eq. (9) we make the impact parameter dependence of the ugd’s explicit):

ϕ(k, x, b) =
CF

αs(k) (2π)3

∫
d2r e−ik·r∇2

r NG(r, Y =ln(x0/x), b) . (10)

In turn, NG is related to the quark dipole scattering amplitude that solves the rcBK equation, N ,
as follows:

NG(r, x) = 2N (r, x)−N 2(r, x) . (11)

Note that this relation entails that the saturation momentum relevant for gluon scattering is larger
than that for quark scattering by about a factor of 2.

Eqs. (10) and (9) were written originally for fixed coupling. In order to be consistent with
our treatment of the small-x evolution, we have extended them by allowing the coupling to run
with the momentum scale. The argument of the running coupling in Eq. (9) is chosen to be
Q = max{|pt + kt|/2, |pt − kt|/2}, while for the definition of the ugd Eq. (10) we take it to be
the transverse momentum itself, k. This turns out to be important in order to reproduce the
centrality dependence of charged particle multiplicities at RHIC, which are otherwise too flat for
small Npart. However, the results are not very sensitive to the particular choice of scale because
ϕ → 0 as k2 → 0 due to the saturation of N (r) at large dipole sizes r. In principle, one could
improve on this educated ansatz by using the results of [13] where running coupling corrections to
inclusive gluon production have been studied. Most importantly, the x-dependence of the dipole
scattering amplitude obtained by solving the rcBK equation encodes all the collision energy and
rapidity dependence of the gluon production formula Eq. (9).

With the ugd as defined above, the normalization factor κ (introduced in the kt-factorization
formula (9) above) required to fit the charged particle multiplicity at RHIC energy turns out to
be κ % 7.1. It lumps together higher-order corrections, sea-quark contributions, parton→ hadron
conversion factors and so on. The results shown below were obtained under the assumption that
this normalization factor is the same for both dEt/dy and dN/dy, and that it is energy independent.
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- kt-factorization + running coupling BK evolution
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with x1(2) = (pt/
√

sNN) exp(±y) and CF = (N2
c−1)/2Nc; the normalization factor κ is given below.

As noted before, we assume that the local density in each nucleus is homogenous over transverse
distances of the order of the nucleon radius RN . Thus, the b-integral in Eq. (9) yields a geometric
factor proportional to the transverse “area” of a nucleon which cancels with a similar factor implicit
in σs from Eq. (8), modulo subtleties in the definition of σs. In any case, uncertainties associated
with the overall normalization of Eq. (8) cancel in the calculation of the initial eccentricity in
Eq. (16).

The unintegrated gluon distributions (ugd’s) ϕ entering Eq. (9) are related to the dipole scat-
tering amplitude in the adjoint representation, NG, through a Fourier transform (for consistency
with the notation used in Eq. (9) we make the impact parameter dependence of the ugd’s explicit):

ϕ(k, x, b) =
CF

αs(k) (2π)3

∫
d2r e−ik·r∇2

r NG(r, Y =ln(x0/x), b) . (10)

In turn, NG is related to the quark dipole scattering amplitude that solves the rcBK equation, N ,
as follows:

NG(r, x) = 2N (r, x)−N 2(r, x) . (11)

Note that this relation entails that the saturation momentum relevant for gluon scattering is larger
than that for quark scattering by about a factor of 2.

Eqs. (10) and (9) were written originally for fixed coupling. In order to be consistent with
our treatment of the small-x evolution, we have extended them by allowing the coupling to run
with the momentum scale. The argument of the running coupling in Eq. (9) is chosen to be
Q = max{|pt + kt|/2, |pt − kt|/2}, while for the definition of the ugd Eq. (10) we take it to be
the transverse momentum itself, k. This turns out to be important in order to reproduce the
centrality dependence of charged particle multiplicities at RHIC, which are otherwise too flat for
small Npart. However, the results are not very sensitive to the particular choice of scale because
ϕ → 0 as k2 → 0 due to the saturation of N (r) at large dipole sizes r. In principle, one could
improve on this educated ansatz by using the results of [13] where running coupling corrections to
inclusive gluon production have been studied. Most importantly, the x-dependence of the dipole
scattering amplitude obtained by solving the rcBK equation encodes all the collision energy and
rapidity dependence of the gluon production formula Eq. (9).

With the ugd as defined above, the normalization factor κ (introduced in the kt-factorization
formula (9) above) required to fit the charged particle multiplicity at RHIC energy turns out to
be κ % 7.1. It lumps together higher-order corrections, sea-quark contributions, parton→ hadron
conversion factors and so on. The results shown below were obtained under the assumption that
this normalization factor is the same for both dEt/dy and dN/dy, and that it is energy independent.

4

  [JLA-Dumitru-Nara]
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LHC data and rcBK CGC Monte Carlo
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inclusive gluon production have been studied. Most importantly, the x-dependence of the dipole
scattering amplitude obtained by solving the rcBK equation encodes all the collision energy and
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4

  [JLA-Dumitru-Nara]

NOTE: rcBK Monte Carlo is built as an upgrade of MC-KLN, by Drescher and Nara 
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Sensitivity of MC-CGC models for the initial state of HIC to high-kt uncertainties

Reminder: e+p, d+Au and Pb+Pb (multiplicities) data are 
compatible with u.g.d with rather different high-kt behavior:

decreasing x

2)
1)
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Sensitivity of MC-CGC models for the initial state of HIC to high-kt uncertainties

~ 10% effect on multiplicity distributions  Larger (x2) effect on transverse energy 
distributions!
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Initial state anisotropy

higher harmonics: v3. “Current CGC-MC 
underestimate initial state fluctuations”

- Not clear to what extent such difference is rooted in the use of kt-factorization
- Initial anisotropies very sensitive to particle production in the (dilute) periphery
- Some differences arise due to implementation details: nucleon size, nucleon spread, sources
of fluctuations etc...

Glauber

MC-rcBK

Fig by J Nagle

WARNING!!

PHENIX talk  at QM2011

v2 measurements can be accommodated both 
for Glauber and MC-CGC i.c

23



 ✔  Important steps have been taken in  promoting GCG to an useful quantitative tool
     - Theoretical calculation of higher order corrections (running coupling)
     - Phenomenological effort to systematically describe data from different  
       systems (e+p, e+A, p+p, d+Au, Aa+Au and Pb+Pb) in an unified framework
     - Devise & maintenance of Monte Carlo methods to input hydro/transport 
       calculation
     -... but more work is still needed!

Conclusions / Outlook

THANK YOU!!

 ✔ First HI LHC data on multiplicities compatible with CGC models 

 ✔ Most urgent tasks: 
      - Putting together b-dependence and evolution
      - Matching with high-x, high-Q2 physics (valence quarks ,DGLAP evolution)
      - Improve non-perturbative modeling in MC-CGC 

 ✔ A p+Pb run would be extremely useful for the calibration of initial-state 
     effects for hard probes, but also to further constrain models for bulk particle 
     production 
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The thermalization conundrum
The energy-momentum tensor after the collision is 
maximally anisotropic:

How does the transition to an (quasi) 
isotropic EMT happen over such short times?

Tµν
LO = diag (ε, ε, ε,−ε)

Tµν
iso = diag (ε, p, p, p)

-2 -1 0 1 2

-1

0

1

2

3

         .
         .

         .

QGP phase

pre-equilibrium

Bottom-up approach: large estimates of thermalization time [Baier et al]

Strong coupling? AdS/CFT studies suggest a rapid thermalization 
Chesler-Yaffe, Lin-Shuryak, Mue, JLA-Kovchegov-Taliotis, Balasubramanian et al]
How to match them with weak coupling/CGC at earlier times?

No conclusive proof of thermalization yet...the elephant remains in the room 

τ = 0+

τth ∼ 1 fm/c

Resummation of Feynmann diagrams leads to free streaming (pz=0) [Kovchegov]

CGC/ weak coupling approaches:

Resummation of unstable secular terms may speed up the thermalization 
dynamics [Romatchske-Venugopalan, Dusling et al]
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Chesler-Yaffe, Lin-Shuryak, Mue, JLA-Kovchegov-Taliotis, Balasubramanian et al]
How to match them with weak coupling/CGC at earlier times?

No conclusive proof of thermalization yet...the elephant remains in the room 

τ = 0+

τth ∼ 1 fm/c

Resummation of Feynmann diagrams leads to free streaming (pz=0) [Kovchegov]

CGC/ weak coupling approaches:

Resummation of unstable secular terms may speed up the thermalization 
dynamics [Romatchske-Venugopalan, Dusling et al]
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Figure 5: Left: field components evaluated by solving numerically the Yang-Mills equations
(from [6]). Right: longitudinal color flux tubes.

3. Just after the collision: Glasma fields

Immediately after the collision, the chromo- E and B fields have only
longitudinal components [6], forming flux tubes along the collision axis (see
the figure 5). This configuration of color fields has been named the glasma.
The typical transverse size of a flux tube is of order Q−1

s , and the color fields
are correlated over α−1

s units of rapidity in the longitudinal direction.
This particular topology of the post-collision color fields has several con-

sequences, among which a peculiar form of the energy-momentum tensor (see
section 4), the fact that the multiplicity distribution is a negative binomial
[7], and the existence of a non-zero topological density FF̃ , possibly at the
origin of observable CP violating effects [8]. But the most direct and striking
consequence of these structures, when taken as initial conditions for hydro-
dynamical expansion, is that they lead to the formation of the so-called ridge

correlations, a structure in the 2-hadron spectrum which is elongated in ∆η
and narrow in ∆φ (see the left plot of the figure 6). By examining the causal
relation between two particles separated in rapidity (right part of the fig-
ure 6), one can see that the process responsible for producing a correlation
between these particles must have taken place at early times,

tcorrelation ≤ tfreeze out e−
1
2
|η

A
−η

B
| .

Since the color fields produced at early times in the CGC formalism are
correlated over rapidity intervals of order α−1

s " 1, they provide a natural
explanation for the rapidity dependence of the ridge [9]. The strength of
the 2-particle correlation is controlled by (QsR)−2 –the area of one flux tube
relative to the total transverse area– since the two particles must come from
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Figure 6: Left: STAR result on 2-hadron correlations. Right: causal relationship between
two produced particles.

the same tube to have been produced by the same coherent field (see the
figure 7, left panel). The azimuthal dependence is produced at a later stage,
by the radial hydrodynamical flow, that collimates the azimuthal angles of
the two particles in the direction of the radial velocity (figure 7, right panel).
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Figure 7: Left: particle emitted from distinct tubes are uncorrelated. Right: collimation
due to the radial flow.

4. Matching to hydrodynamics

At times τ ! Q−1
s , the standard description of the evolution of the fireball

is via hydrodynamical expansion. However, a trivial consequence of the fact
that the chromo- E and B fields are initially parallel to the collision axis
in the glasma is that the energy-momentum tensor one obtains at leading
order in g2 in the CGC is of the form T µν

LO
(0+, η,x) = diag (ε, ε, ε,−ε) where

7

CGC at very early times
Solution of classical Yang-Mills EOM: (A+A): Electric and magnetic fields are longitudinal:

Correlated over rapidity intervals  

Correlated over transverse sizes

∆η ∼ 1
αs

∆R⊥ ∼
1

Qs

Lappi

Imply the presence of long-range in rapidity correlations, which must be generated at early 
times.

Several attempts to describe current correlation data based on CGC+ radial flow exist [Gavin, 
McLerran, Dusling et al]
...however, phenomenological description of the demands accounting for flow effects 
triggered by initial state fluctuations   

Fig by F Gelis
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CGC Monte Carlo: MC-KLN and rcBK 
1. Initial conditions for the evolution (x=0.01)

where Λ = 0.241 GeV. This introduces two free parameters: the value x0 where the evolution
starts and the initial saturation scale Qs0(R) at the transverse coordinate R; it measures the local
density of large-x sources at a fixed point in impact parameter space (i.e., in the transverse plane).

As explained in more detail below, the geometry of a given A+A collision is determined by the
fluctuations in the positions of the nucleons in the transverse plane. Each configuration defines a
different local density in the transverse plane of each nucleus. Obviously, the smallest non-zero
local density corresponds to the presence of a single nucleon. The corresponding value of Qs0 is
constrained by phenomenological analyses of e+p2 and p+p data in [11] and [13]. This results
in a central value Q2

s0 ≈ 0.2 GeV 2 for x0 ≈ 0.01. On the other hand, in A+A collisions rare
fluctuations can result in collisions of a large number of nucleons at the same transverse position
and, therefore, in a large Qs0. To account for all possible configurations we tabulate the solution
of the rcBK equation for different values of the initial local density, i.e., for each value of Qs0 in
Eq. (4) ranging from 0.2 GeV2 to 5 GeV2 in bins of 0.1 GeV2. The solutions are then used in
the kt-factorization formula to calculate local gluon production at each point in the collision zone.
Finally we perform the average over all the nucleon configurations generated by the Monte Carlo.

To complete our discussion of the initial conditions we explain how we construct Qs0(R).
We first generate a configuration of nucleons for each of the colliding nuclei. This consists of
a list of random coordinates ri, i = 1 . . . A, chosen from a Woods-Saxon distribution. Multi-
nucleon correlations are neglected except for imposing a short-distance hard core repulsion which
enforces a minimal distance ≈ 0.4 fm between any two nucleons. After this step, the longitudinal
coordinate of any nucleon is discarded, they are projected onto the transverse plane. Factorizing
the fluctuations of the nucleons in a nucleus from possible fluctuations of large-x “hot spots”
within a nucleon (not accounted for at present), and finally from semi-hard gluon production
appears to be justified by the scale hierarchy

1

Qs

" RN " RA , (5)

where RA, RN are the radii of a nucleus and of a proton, respectively.
For a given configuration, the initial saturation momentumQs0(R) at the transverse coordinate

R is taken to be
Q2

s0(R) = N(R)Q2
s0,nucl , (6)

where Q2
s0, nucl = 0.2 GeV2, as discussed above, and where N(R) is the number of nucleons from

the given nucleus which “overlap” the point R:

N(R) =
A
∑

i=1

Θ

(
√

σ0

π
− |R− ri|

)

. (7)

Some care must be exercised in choosing the transverse area σ0 of the large-x partons of a nucleon.
Qs0 corresponds to the density of large-x sources with x > x0 and should therefore be energy
independent (recoil of the sources is neglected in the small-x approximation). We therefore take
σ0 $ 42 mb to be given by the inelastic cross-section at

√
s = 200 GeV. However, σ0 should not

be confused with the energy dependent inelastic cross section σin(s) of a nucleon which grows due
to the emission of small-x gluons.

2Note that the initial conditions in that work were slightly different since they included an anomalous dimension
γ > 1 (while γ = 1 for the MV i.c.).
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2. Solve local running coupling BK 
evolution at each transverse point

rcBK equation
or KLN model

ϕ(x0 = 0.01, kt, R)

ϕ(x, k�, R)

b

R

ri 3 Calculate gluon production at each transverse point 
according to kt-factorization

INPUT: ϕ(x = 0.01,kt) FOR A SINGLE NUCLEON: 

NOTE: rcBK Monte Carlo is built as an upgrade of MC-KLN, by Drescher and Nara 

28


