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Lorentz invariance

Physical laws must not change when passing from a reference frame
to another through Lorentz transformations.

Inverse renormalized propagator from a Lorentz-invariant Lagrangian

iD−1 = (p2 − m2)

The poles of the propagator give us the LI dispersion relation

p2 = E2 − ~p2 = m2

The velocity law is:

~v =
∂E

∂~p
=

~p
√

m2 +~p2
≃ ~p

|~p|

(

1 − m2

2~p2

)

and saturates at the speed of light when |~p| ≫ m



Lorentz violation

Stringent bounds on LV operators coming from experiments on

photons, electrons or nucleons

(non-zero deviations of Lorentz symmetry at weak confidence levels)
V. A. Kostelecky, N. Russell, Rev. Mod. Phys. 83 (2011) 11



Neutrinos and Lorentz violation
Experimental evidence of Lorentz violating phenomena in neutrinos

OPERA T. Adam et al. [ OPERA Collaboration ], [arXiv:1109.4897 [hep-ex]].

δt = −60.7 ± 6.9(stat) ± 7.4(sys) ns 68% C.L.

corresponding to: βν − 1 = (2.48 ± 0.41)× 10−5 68% C.L., consistent with c at 6σ

No energy dependence in the effect
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OPERA T. Adam et al. [ OPERA Collaboration ], [arXiv:1109.4897 [hep-ex]].

δt = −60.7 ± 6.9(stat) ± 7.4(sys) ns 68% C.L.

corresponding to: βν − 1 = (2.48 ± 0.41)× 10−5 68% C.L., consistent with c at 6σ
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MINOS P. Adamson et al. [MINOS Collaboration], Phys. Rev. D 76 (2007) 072005.

δt = −126 ± 32(stat) ± 64(sys) ns 68% C.L.

corresponding to: βν − 1 = (5.1 ± 3.9) × 10−5 68% C.L., consistent with c at < 1.8σ

No energy dependence in the effect

Stringent bound from high energy ν (< Eν >∼ 80 GeV) at Fermilab

|βν − 1| < 4 × 10−5 G. R. Kalbfleisch et al., Phys. Rev. Lett. 43 (1979) 1361.

Very stringent bounds from SN1987a



Is this real new physics?

Minos anomaly was at less than 2σ, but Opera results are at 6σ!



Neutrinos in brief

Neutrinos’ properties are known to limited accuracy

no experimental evidence for right handed neutrinos

Dirac or Majorana particles?

squared mass differences and mixing angles are known from oscillations:

∆m2
12 = (7.59 ± 0.21)× 10−5 eV2 |∆m2

32| = (2.43 ± 0.13)× 10−3 eV2

sin2 2θ12 = 0.861+0.026
−0.022 sin2 2θ23 > 0.92 sin2 2θ13 < 0.15

various possibilities for their mass hierarchies:

Normal m1 < m2 ≪ m3 m3 ≃
√

∆m2
32 ∼ 0.05 eV

Inverted m1 ≃ m2 ≫ m3 m1,2 ≃
√

∆m2
32 ∼ 0.05 eV

Degenerate m1 ≃ m2 ≃ m3 m1,2,3 & 0.1 eV

only upper bound on their masses, the most stringent from tritium decay

mν < 2eV

data taken from K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)



Neutrinos and Lorentz violation

LVs are not (yet!) described by a unique and well established theory

nothing in principle forbids LVs to affect only a class of particles

the elusiveness of neutrinos makes them suitable candidates for
searches of new physics

significant amount of experimental data on neutrinos already collected
and hopefully even more will be added in the future

A complete and careful analysis of Lorentz violation signatures in the
neutrino sector is strongly motivated!



Lorentz violation

Modified dispersion relation

E2 −~p2 = m2 ± fLV(E,~p
2,m,M)

LV effects may not derive from a Lagrangian description!

The modified velocity law becomes (at very high energies, when E ∼ |~p|):

~v =
∂E

∂~p
=

2~p ± ∂fLV/∂~p

2
√

~p2 + m2 ± fLV

≃ ~p

|~p|

(

1 − m2

2~p2
∓ fLV

2~p2
± ∂fLV/∂|~p|

2|~p|

)

and the speed of light is not necessarily the upper bound!



Parametrising the LV term

Phenomenological approach
Any deviation from the usual velocity law can be parametrized as:

v = 1 −
m2

2E2
±∆LV(E)

where ∆LV is linked to the LV term in the dispersion relation as:

∆LV(E) = ∓
fLV

2E2
±

∂fLV/∂E
2E
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Power Law parametrisation

LV in the dispersion relation

E2 − ~p2 ± E2

(

E
M

)α

= m2

Velocity of neutrinos

v ≃ 1 ±

(

E
2M

)α

New physics at scale M, but which value of α?

α = 1, 2, related to operators of dimension 5 or 6 in the Lagrangian
→ Quantum Gravity inspired

model independent analysis with non-integer α
(→ it is possible to build a toy model inspired by unparticles )
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What we have seen

Distance of the SN

51.33 ± 1.2 kpc

Detected neutrinos

Baksan: 5 events within ∼ 9 sec

IMB: 8 events within ∼ 5 sec

Kamiokande II: 16 events within ∼ 23 sec

Time gap between neutrinos and photons: δtγν = 0 ± 10 h

L. Stodolsky, Phys. Lett. B201 (1988) 353



Three sets of data

Baksan
ti (s) Ei (MeV) σi (MeV)
≡ 0.0 12.0 2.4
0.435 17.9 3.6
1.710 23.5 4.7
7.687 17.6 3.5
9.099 20.3 4.1

IMB
ti (s) Ei (MeV) σi (MeV)
≡ 0.0 38 7
0.412 37 7
0.650 28 6
1.141 39 7
1.562 36 9
2.684 36 6
5.010 19 5
5.582 22 5

Kamiokande II
ti (s) Ei (MeV) σi (MeV)
≡ 0.0 20 2.9
0.107 13.5 3.2
0.303 7.5 2.0
0.324 9.2 2.7
0.507 12.8 2.9
0.686 6.3 1.7
1.541 35.4 8.0
1.728 21.0 4.2
1.915 19.8 3.2
9.219 8.6 2.7

10.433 13.0 2.6
12.439 8.9 1.9
17.641 6.5 1.6
20.257 5.4 1.4
21.355 4.6 1.3
23.814 6.5 1.6

Events with energies Ei < 7.5 MeV are
discarded, being too close to the back-
ground peak

Further information:
Relative arrival times not known =⇒ t ≡ 0 for the first event in each data set
Uncertainties on times negligible wrt uncertainties on energies
Neutrinos detected through absorption process:

ν̄e + p → e+ + n =⇒ Eν = Ei + Q with Q = 1.29 MeV



Neutrinos from SN
Different mechanisms (cooling models, accretion models, mixed mechanisms . . . )

Crucial parameters

Interval of time during which neutrinos are emitted

prompt emission (all neutrinos emitted at the same time)
delayed emission (with interval δtSN

νiνf
)

Offset in time between the emission of neutrinos and photons (δtSN
γν )



Neutrinos from SN
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Crucial parameters

Interval of time during which neutrinos are emitted

prompt emission (all neutrinos emitted at the same time)
delayed emission (with interval δtSN

νiνf
)

Offset in time between the emission of neutrinos and photons (δtSN
γν )

If LV is energy-dependent. . .

. . . we also need to parametrize the energy spectrum of emitted neutrinos:

F ∼ Eαze−(1+αz)E/E0

C. Lunardini and A. Y. Smirnov, Astropart. Phys. 21 (2004) 703

Ranges for the parameters:
{
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Propagation of neutrinos
Lorentz-conserving hypothesis

Observables at detector

Shift in time between photons and the first detected neutrinos:

δtγν = δtSN
γν +

L

c

(

c

vνi (m, Ei)
− 1

)

For mν ∼ 1eV and Eνi ∼ 7MeV: δtγν ≃ δtSN
γν + 0.05sec

Spread in the arrival times of neutrinos:

δtνiνf = δtSN
νiνf

+ L

(

1

vνi (m,Ei)
− 1

vνf (m, Ef )

)

For mν ∼ 1eV, Eνi ∼ 7MeV and Eνf ∼ 40MeV: δtνiνf ≃ δtSN
νiνf

+ 0.05sec
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Lorentz-conserving hypothesis

Observables at detector

Shift in time between photons and the first detected neutrinos:

δtγν = δtSN
γν +

L

c

(

c

vνi (m, Ei)
− 1

)

For mν ∼ 1eV and Eνi ∼ 7MeV: δtγν ≃ δtSN
γν + 0.05sec

Spread in the arrival times of neutrinos:

δtνiνf = δtSN
νiνf

+ L

(

1

vνi (m,Ei)
− 1

vνf (m, Ef )

)

For mν ∼ 1eV, Eνi ∼ 7MeV and Eνf ∼ 40MeV: δtνiνf ≃ δtSN
νiνf

+ 0.05sec

Possible sources of confusion

Gravity-induced velocity modification (assumed to be negligible)

Interaction with dark matter

mean free path: r =
1

nDMσν,DM
 

{

nDM ∼ 3 × 10−3cm−3

σν,DM ∼ 10−7pb
=⇒ r ∼ 1046cm

to be compared with the distance of SN 1987a: L ∼ 1023cm



Propagation of neutrinos
the effect of Lorentz violation

Observables receive a contribution from ∆LV(E)

Shift in time between photons and the first detected neutrinos:

δtγν = δtSN
γν +

L

c

(

c

vνi (m, Ei,∆LV(Ei))
− 1

)

Spread in the arrival times of neutrinos:

δtνiνf = δtSN
νiνf

+ L

(

1

vνi (m, Ei,∆LV(Ei))
− 1

vνf (m, Ef ,∆LV(Ef ))

)



Bounds on LV parameters
Propagation of 2 sample neutrinos with energies: Eν1 = 7MeV , Eν2 = 40MeV

Conditions to satisfy at the detector

Shift in time neutrinos-photons: |δtγν | < 10 h

Spread of the neutrino bunch: |δtν1ν2 | < 10 sec



Bounds on LV parameters
Propagation of 2 sample neutrinos with energies: Eν1 = 7MeV , Eν2 = 40MeV

Conditions to satisfy at the detector

Shift in time neutrinos-photons: |δtγν | < 10 h

Spread of the neutrino bunch: |δtν1ν2 | < 10 sec

Allowed

∆tΝ1Ν2

∆tΝΓ
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The strongest bound is given by the
time spread between neutrinos with
different energies in the whole range
of α and M parameters.



How robust are these estimates?

An accurate simulation needs just three inputs:

recorded data (with uncertainties)

assumption on the energy spectrum of the neutrinos
(which depends very mildly on its parameters)

expected number of neutrinos at detector

It is not necessary to know the production mechanism
Consistency checks with common SN models can be performed a posteriori !



Simulation steps

1 generation of N neutrino bunches at detector. For each bunch:
the number and detection times of neutrinos is the same as those detected
the energies follow a gaussian distribution around the detected value
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1 generation of N neutrino bunches at detector. For each bunch:
the number and detection times of neutrinos is the same as those detected
the energies follow a gaussian distribution around the detected value

2 the bunches are evolved backward in time up to the SN source with the LV
dispersion relation =⇒ distribution of initial time dispersions

3 generation of N neutrino bunches at the SN source. For each bunch:
the number of neutrinos can be either the same as those detected (fixed number ) or
varying according to a Poisson distribution centered at a certain value n (varying
number )
the time dispersions are taken randomly following the distribution obtained in step 2
the energies are distributed following the assumption on the energy spectrum

Μ = 28.7355 sec
ΣL = 4.74091 sec
ΣR = 5.38805 sec

20 25 30 35 40 45 50
0

200

400

600

800

seconds

co
un

ts

Distribution of initial time intervals

Μ = 10.9992 MeV
ΣL = 4.45896 MeV
ΣR = 6.61341 MeV

0 10 20 30 40 50
0

1000

2000

3000

4000

MeV

co
un

ts

Energy spectrum at supernova



Simulation steps

1 generation of N neutrino bunches at detector. For each bunch:
the number and detection times of neutrinos is the same as those detected
the energies follow a gaussian distribution around the detected value

2 the bunches are evolved backward in time up to the SN source with the LV
dispersion relation =⇒ distribution of initial time dispersions

3 generation of N neutrino bunches at the SN source. For each bunch:
the number of neutrinos can be either the same as those detected (fixed number ) or
varying according to a Poisson distribution centered at a certain value n (varying
number )
the time dispersions are taken randomly following the distribution obtained in step 2
the energies are distributed following the assumption on the energy spectrum

4 the bunches are evolved forward =⇒ distribution of time dispersions at
detector and time shifts wrt photons characterized by statistical averages
and (in general asymmetric) standard deviations .

Μ = 19.523 sec
ΣL = 4.34672 sec
ΣR = 5.21007 sec
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Analysis of simulation results

Simulation details

Number of simulated bunches: N = 104

Parameters for energy spectrum: E0 = 11MeV, αz = 3

F ∼ E3e−
4

11 E

Expected neutrinos for Varying Number hypothesis: n = 10



Analysis of simulation results

Simulation details

Number of simulated bunches: N = 104

Parameters for energy spectrum: E0 = 11MeV, αz = 3

F ∼ E3e−
4

11 E

Expected neutrinos for Varying Number hypothesis: n = 10

Bounds on LV parameters can be obtained from the simulation requiring:

Consistency with SN models =⇒ Initial time dispersion O(10sec)

Shift between neutrinos and photons at detector: |δtγν | < 10h

The detected time dispersion δtνiνf must be in the interval (δtsim
νiνf

)+2σR
−2σL



Numerical results

Baksan
IMB
KII
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Bounds for preferred α values in Quantum Gravity scenarios

α = 1 =⇒ M > (2 ÷ 6)× 109 GeV
α = 2 =⇒ M > (0.8 ÷ 2)× 104 GeV
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Long baseline experiments vs. SN

Three basic differences between SN and MINOS/OPERA neutrinos

1 Distance between source and detector:

LSN = 51.33 ± 1.2 kpc
LMINOS ∼ LOPERA ∼ 700km

}

−→ a difference of
16 orders of magnitude

2 Energy of neutrinos:

ESN
ν ∼ 10MeV

EMINOS
ν ∼ 3GeV

EOPERA
ν ∼ 30GeV







−→ a difference of
2(MINOS) or 3(OPERA) orders of magnitude

3 Flavour composition of the beam:

SN: all flavours (with different luminosities: Lνe ∼ Lν̄e ∼ 2Lνµ,τ ,ν̄µ,τ )

MINOS and OPERA: only muon neutrinos

Main advantage in long baseline experiments:

Very precise measurement
of distance and energy

=⇒
model independent

interpretation of the results



Estimation of LV effects
at Fermilab 1979, MINOS and OPERA

Condition to satisfy at Fermilab 1979
LV propagation of a neutrino with energy Eν = 80 GeV

Ratio of neutrino velocity wrt c: |βν − 1| < 4 × 10−5

Condition to satisfy at MINOS
LV propagation of a neutrino with energy Eν = 3 GeV

Shift wrt expected time of flight: δ = (−126 ± 1σ)ns

Condition to satisfy at OPERA
LV propagation of a neutrino with energy Eν = 30 GeV

Shift wrt expected time of flight: δ = (−60 ± 3σ)ns

And compare the results with SN bounds!



Estimation of LV effects
at Fermilab 1979, MINOS and OPERA

Allowed
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Blue lines: SN bounds

Solid Black line: Fermilab 1979
bound

Dashed Black line: MINOS 3σ
bound

OPERA and MINOS allowed regions

Green region: MINOS 1σ

Red Dashed region: OPERA 3σ

There is tension between the measurements
in the whole parameter space



How robust are these estimates?

If Lorentz violation is energy-dependent, it affects
both the shift and the spread of neutrino time profiles

at the Far Detector (MINOS) or Gran Sasso (OPERA)
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FD/GS and check consistency with published data
2 Do the same in the LV hypothesis: consistency with data will

provide bounds on LV parameters



How robust are these estimates?

If Lorentz violation is energy-dependent, it affects
both the shift and the spread of neutrino time profiles

at the Far Detector (MINOS) or Gran Sasso (OPERA)

How to analyse data to search for LV effects:
1 Reproduce MINOS/OPERA results on time shift and spread at

FD/GS and check consistency with published data
2 Do the same in the LV hypothesis: consistency with data will

provide bounds on LV parameters

At present our analysis has been performed only for MINOS
data, but the procedure will be exactly the same for OPERA

and will pose even more stringent bounds due to OPERA’s better precision



Step 1: reproducing MINOS data

Reconstruct the time distribution at ND through digitization of published figures
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Step 1: reproducing MINOS data

Reconstruct the time distribution at ND through digitization of published figures

Reconstruct the data points at FD through digitization of published figures
(63 points in ∼12µs: bin size = 188.2ns)

Compute the expected time distribution at FD considering a smearing of 150ns

Superposition of data points and check with published result

Likelihood analysis for binned and randomly dispersed data in the 188.2ns bin

−→ δ = 18.0ns
σ = 31.6ns

−→ δ = 15.3ns
σ = 32.6ns

We reproduce the statistical error but not -126ns time shift
consistently with the fact that the data points in the paper are plotted after the fit



Step 2: Bounds on LV hypothesis

Generate predictions for time distributions scanning over α and M

blind scan on α and M not effective: very sharp passage from excluded region to
no-effect region =⇒ useful to have an idea of allowed region for {α,m}
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Step 2: Bounds on LV hypothesis

Generate predictions for time distributions scanning over α and M

blind scan on α and M not effective: very sharp passage from excluded region to
no-effect region =⇒ useful to have an idea of allowed region for {α,m}
for a given α simulation of a small set of M values around the value which
maximises the likelihood

−→

Minimum value for M =⇒ effect too large



Step 2: Bounds on LV hypothesis

Generate predictions for time distributions scanning over α and M

blind scan on α and M not effective: very sharp passage from excluded region to
no-effect region =⇒ useful to have an idea of allowed region for {α,m}
for a given α simulation of a small set of M values around the value which
maximises the likelihood

−→

M for max Likelihood =⇒ -126ns shift



Step 2: Bounds on LV hypothesis

Generate predictions for time distributions scanning over α and M

blind scan on α and M not effective: very sharp passage from excluded region to
no-effect region =⇒ useful to have an idea of allowed region for {α,m}
for a given α simulation of a small set of M values around the value which
maximises the likelihood

−→

Maximum value for M =⇒ no effect at all



Step 2: Bounds on LV hypothesis

Generate predictions for time distributions scanning over α and M

blind scan on α and M not effective: very sharp passage from excluded region to
no-effect region =⇒ useful to have an idea of allowed region for {α,m}
for a given α simulation of a small set of M values around the value which
maximises the likelihood

the allowed range on the α− log M plane is obtained



Step 2: Bounds on LV hypothesis
Two effects of energy-dependent LV:

First order: average shift in time
Second order: α-dependent spread in the waveform, not observed

α = 0.7 α = 2.1

The maximum likelihood value depends on α
The region at low α is favoured at MINOS



Combined results
SN 1987a + MINOS bounds

Statistic + Systematic

Only Statistic

1Σ

1.64Σ

Supernova Bound
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The tension between SN and MINOS data is confirmed
The values α = 1 or 2, justified by quantum gravity, are disfavoured at 1σ!
This tension can just worsen with OPERA data, due to the absen ce of energy

dependence (distortion of the shape of the time distributio n)



Why the tension?
SN 1987a + MINOS bounds

Two puzzles (assuming LV)
The time shift of SN neutrinos seems to be almost consistent
with 0 sec, while the shift at MINOS is consistent with 0 sec at
1.8σ (and OPERA at 6σ!)

The time dispersion of neutrinos from SN is ∼10 sec, while
MINOS does not measure any spread in the waveform
and neither does OPERA
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How to explain these puzzles?
errors in the experimental analysis : at MINOS it could just be
a statistical fluctuation, but the results at OPERA are striking!



Why the tension?
SN 1987a + MINOS bounds

Two puzzles (assuming LV)
The time shift of SN neutrinos seems to be almost consistent
with 0 sec, while the shift at MINOS is consistent with 0 sec at
1.8σ (and OPERA at 6σ!)

The time dispersion of neutrinos from SN is ∼10 sec, while
MINOS does not measure any spread in the waveform
and neither does OPERA

How to explain these puzzles?
errors in the experimental analysis : at MINOS it could just be
a statistical fluctuation, but the results at OPERA are striking!

Are LV terms dependent on energy in a different way than the
power law? How to explain such behaviour in terms of a
theoretical model ?



A third way?
Flavour-dependent Lorentz violations

Three major differences between neutrinos from SN and MINOS/OPERA:

Distance: O(kpc) vs. O(km)

Energy: O(MeV) vs O(GeV)

Flavour: Only electron antineutrinos from SN have been detected, while MINOS
and OPERA beams are composed of muon neutrinos

Hypothesis
Lorentz violation may affect only muon neutrinos,

while electron neutrinos would propagate in a Lorentz invariant way



A third way?
Flavour-dependent Lorentz violations

Lorentz violation may affect only muon neutrinos,
while electron neutrinos would propagate in a Lorentz invariant way

Consequences on oscillation

electron neutrino: |νe〉 = cθ|ν1〉 + sθ|ν2〉
muon neutrino: |νµ〉 = −sθ|ν1〉 + cθ|ν2〉

Oscillation |νe〉 → |νµ〉 with a LV flavour-dependent dispersion relation E2
i = p2 + m2

i + δip
2:

〈νµ|ν(t, x)〉 = i sin(2θ)
∫

dp f (p) e
−i

(

px+
E1+E2

2 t

)

sin
(

E1 − E2

2
t

)

= i sin(2θ)
∫

dp f (p) e
−ip

(

x+t+
m2

1+m2
2

4p2 t+
δ1+δ2

4 t

)

sin

(

∆m2

4p
t+

δ1 − δ2

4
pt

)
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Lorentz violation may affect only muon neutrinos,
while electron neutrinos would propagate in a Lorentz invariant way

Consequences on oscillation

electron neutrino: |νe〉 = cθ|ν1〉 + sθ|ν2〉
muon neutrino: |νµ〉 = −sθ|ν1〉 + cθ|ν2〉

Oscillation |νe〉 → |νµ〉 with a LV flavour-dependent dispersion relation E2
i = p2 + m2

i + δip
2:

〈νµ|ν(t, x)〉 = i sin(2θ)
∫

dp f (p) e
−i

(

px+
E1+E2

2 t

)

sin
(

E1 − E2

2
t

)

= i sin(2θ)
∫

dp f (p) e
−ip

(

x+t+
m2

1+m2
2

4p2 t+
δ1+δ2

4 t

)

sin

(

∆m2

4p
t+

δ1 − δ2

4
pt

)

To fit the measured advance it must be δ1+δ2
4 ∼ δ1 ∼ −10−2, but this means that:

10−2
∼

∣

∣

∣

∣

δ1 − δ2

4

∣

∣

∣

∣

≫
∆m2

4p2
∼ 10−23

=⇒
the oscillation pattern

would be completely different
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Parametrising the LV term

Different possibilities to explore, e.g.:

Power law with fixed mass scale: 2 parameters {δ, α}

∆LV (E) = δ

(

E

MPl

)α

=⇒ v ∼ 1 ± δ

(

E

MPl

)α

Sensitive to small α, where the energy dependence is milder.



Parametrising the LV term

Different possibilities to explore, e.g.:

Power law with fixed mass scale: 2 parameters {δ, α}

∆LV (E) = δ

(

E

MPl

)α

=⇒ v ∼ 1 ± δ

(

E

MPl

)α

Sensitive to small α, where the energy dependence is milder.

Exponential: 2 parameters {δ, µ}

∆LV(E) = δ

(

1 − e
− E

µ

)

=⇒ v ∼ 1 ± δ

(

1 − e
− E

µ

)

Energy independent at large energies.



Parametrising the LV term

Different possibilities to explore, e.g.:

Power law with fixed mass scale: 2 parameters {δ, α}

∆LV (E) = δ

(

E

MPl

)α

=⇒ v ∼ 1 ± δ

(

E

MPl

)α

Sensitive to small α, where the energy dependence is milder.

Exponential: 2 parameters {δ, µ}

∆LV(E) = δ

(

1 − e
− E

µ

)

=⇒ v ∼ 1 ± δ

(

1 − e
− E

µ

)

Energy independent at large energies.

Hyperbolic tangent (step function): 3 parameters {δ,m′, µ}

∆LV(E) = δ

(

1 + tanh

(

E − m′

µ

))

=⇒ v ∼ 1 ± δ

(

1 + tanh

(

E − m′

µ

))

vν ∼ 1 at low energies and energy independent deviation at large energies.



Estimation of the bounds
power law for low α and exponential

v ∼ 1 ± δ (E/MPl)
α

Allowed

-10 -8 -6 -4 -2 0
-6

-5

-4

-3

-2

-1

0

Log ∆

Lo
g
Α

v ∼ 1 ± δ
(

1 − e−E/µ
)

Allowed

-12 -10 -8 -6 -4 -2 0

-5

0

5

10

Log ∆

Lo
g
Μ
�G

eV

The power law and exponential parametrisations do not remov e
the tension between SN and MINOS/OPERA

in any region of the parameter space



Estimation of the bounds
hyperbolic tangent, i.e. step function

v ∼ 1 ± δ
(

1 + tanh
(

E−m′

µ

))

Allowed

m’=1 GeV
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In this parametrisation the tension can be removed, and play ing
with the parameters only OPERA can be accomodated



Estimation of the bounds
hyperbolic tangent, i.e. step function

Fitting experimental values

Allowed

∆ to fit MINOS
-126+1Σ ns

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

m’ @GeVD

Μ
@G

eV
D

Allowed

∆ to fit OPERA
central value

0 10 20 30 40
0

2

4

6

8

10

m’ @GeVD

Μ
@G

eV
D

More detailed information of allowed parameter ranges
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Conclusion and Outlook

Violations of Lorentz invariance , though strongly constrained by
experiments, seems to appear in sectors which have not been fully
understood yet, such as neutrino physics

Tests on phenomenological parametrizations of energy-dependent
Lorentz violation in neutrinos exploiting data from SN 1987a, MINOS
and the very recent 6σ results from OPERA

Tension between bounds from supernova and MINOS/OPERA!
for a power-law parametrization of LV with non-integer exponent

Tension removed in alternative parametrisations of LV
with sharp energy dependence

Maybe new physics has been found,
but independent experimental confirmation is badly needed!
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Numerical results
Power law for M < MPl at given α

α
tSN (sec) ∆tνγ (sec) Mmin (GeV)

FN VN FN VN FN VN

Baksan

0.5 18.4+6.2
−5.6 11.7+3.3

−3.0 43.3+6.6
−7.0 22.2+3.1

−3.1 5 × 1019 2 × 1020

1 18.0+6.5
−5.6 13.6+4.5

−4.0 22.1+5.0
−4.9 14.4+3.1

−3.0 2 × 109 3 × 109

1.5 21.0+8.6
−6.9 14.5+5.4

−4.5 19.2+5.4
−4.9 11.4+2.9

−2.7 5 × 105 7 × 105

2 22.3+10.7
−7.6 15.8+6.7

−5.2 16.9+5.1
−4.6 10.3+3.1

−2.8 8 × 103 1 × 104

IMB

0.5 14.0+2.5
−2.1 15.1+2.7

−2.4 20.7+2.0
−2.2 22.2+2.3

−2.4 5 × 1020 4 × 1020

1 16.8+3.0
−2.8 16.9+3.0

−2.7 16.5+1.9
−2.0 16.3+2.0

−2.0 6 × 109 6 × 109

1.5 11.6+1.9
−1.6 11.6+1.9

−1.6 10.1+0.9
−1.0 10.0+1.0

−1.0 2 × 106 2 × 106

2 16.8+3.7
−2.9 16.7+3.8

−3.0 13.1+1.6
−1.7 12.9+1.6

−1.6 2 × 104 2 × 104

KII

0.5 30.4+4.5
−4.4 37.0+6.2

−5.9 40.6+3.4
−3.7 51.4+5.2

−5.3 1.6 × 1020 9 × 1019

1 28.7+5.3
−4.7 34.8+7.1

−6.4 26.8+2.6
−2.6 32.7+4.2

−3.7 4 × 109 3 × 109

1.5 27.3+6.4
−5.1 33.8+9.0

−7.2 21.7+2.3
−2.0 26.5+4.0

−3.1 1 × 106 8 × 105

2 19.6+4.4
−3.1 19.7+4.5

−3.1 15.6+1.1
−0.8 15.8+1.4

−0.9 2 × 104 2 × 104
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Its propagator is:
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Conformal neutrinos
see G. von Gersdorff and M. Quiros, Phys. Lett. B 678 (2009) 317

A conformally invariant sector of the SM would have large anomalous
dimension. For a fermion:

dψ =
3

2
+ γ with γ > 0

The right-handed neutrino has no charges under the gauge groups of the SM,
therefore it can be described by an operator ψR belonging to a conformal sector.
Its propagator is:

∆ψ(p) = −iBγ
σ̄µpµ

(−p2 − iǫ)1−γ
with Bγ =

Γ(1 − γ)

(4π)2γΓ(1 + γ)

Interaction of ψR = B1/2µγνR with SM doublet:

L =
1

Λγ
yν L̄HψR + h.c. = B1/2

γ

( µ

Λ

)γ
yν L̄HνR + h.c.

generates a neutrino mass :

mν = B1/2
γ

( µ

Λ

)γ yνv√
2

=⇒
µ=mν

mν = B
1

2(1−γ)
γ

(

yνv√
2Λ

)
γ

1−γ yνv√
2



Conformal neutrinos
Extra-dimensional reformulation

Warped space with conformal metric ds2 = R2

z2 (dxµdxµ − dz2) and boundary ǫ = 1
Λ

AdS/CFT interpretation

AdS CFT

Fields on the boundary z = ǫ ⇐⇒ Elementary fields
Fields in the bulk Operators

Conformal neutrino model −→ SM fields localized on the boundary and νR propagating in the bulk



Conformal neutrinos
Extra-dimensional reformulation

Warped space with conformal metric ds2 = R2

z2 (dxµdxµ − dz2) and boundary ǫ = 1
Λ

AdS/CFT interpretation

AdS CFT

Fields on the boundary z = ǫ ⇐⇒ Elementary fields
Fields in the bulk Operators

Conformal neutrino model −→ SM fields localized on the boundary and νR propagating in the bulk

Effective lagrangian for the neutrino sector leads to modified propagator:

Lν = −iν̄Lσ̄
µ∂µνL + yν v√

2
(νLνR + h.c.)− iΣ(p)νRσ

µ∂µν̄R

⇓
∆ν ∼ 1

Σ(p)p2−
(

yν v√
2

)2 where Σ(p) ∼
ǫp≪1

Nc
( p

Λ

)1−2c

Mass of the neutrino

mν = N
1

3−2c
c Λ

1−2c
3−2c

(

yν v√
2

) 2
3−2c −→ Conformal neutrinos for

γ = c − 1/2 and N−1
c = B2

γ



Conformal neutrinos
Lorentz violation

Assumption

Lorentz violation appears only in the bulk
while physics on the UV boundary is Lorentz invariant

⇓
Only neutrinos can feel Lorentz violation



Conformal neutrinos
Lorentz violation

Assumption

Lorentz violation appears only in the bulk
while physics on the UV boundary is Lorentz invariant

⇓
Only neutrinos can feel Lorentz violation

The expansion of Σ(p) can contain subleading terms with a LV energy-dependence

ΣLV(p) ∼ Nc

( p

Λ

)−2γ
+ δLV

(

E

M̃

)β

+ . . . with β > −2γ

Modified dispersion relation for neutrinos

p2 +
2δLV

(1 − γ)Nc

m2+2γ
ν

Λ2γM̃β
Eβ = m2

ν

It is a power law behaviour with noninteger exponent!


	Lorentz violation and the neutrino sector
	Power Law Lorentz Violation
	Bounds from Supernova 1987a
	Bounds from MINOS and OPERA

	Alternative LV parametrisations
	Conclusions and prospects
	A toy model: conformal neutrinos

