Microscopic theory of the γ -decay of nuclear giant resonances

Marco Brenna, Gianluca Colò and Pier Francesco Bortignon

14-16 November 2011

http://arxiv.org/abs/1111.0619

Outline

- Giant Resonances
- PVC

2 Results

- Decay to GS
- Decay to a vibrational state

3 Conclusions

Giant Resonances PVC

Giant Resonances General features

- Signature of some many-body correlations inside the nucleus
- Nuclear interaction in a given channel
 - Gamow Teller Resonance ⇒ Spin Isospin interaction
- Parameters of the equation of state of nuclear matter

 - Quadrupole \Rightarrow Effective mass
- 60-year-studies on GRs (since 1947), two books
 - P.F. Bortignon, A. Bracco, R.A. Broglia, 1998
 - M.N. Harakeh, A. van der Woude, 2001
- Nowadays: more exclusive experiments ⇒ γ-decay (LNL-INFN, June 2010)
- Resonances in exotic nuclei (n rich)

Giant Resonances PVC

Giant Resonances General features

- Energy: 10 30 MeV
- Width: 2 5 MeV
- High fraction of Energy Weighted Sum Rule (EWSR)

Decay of GRs

- Particle emission (neutrons)
- Compound nucleus
- γ -decay

$\gamma\text{-decay}$

- suppressed with respect to particle decay $(\sim 10^{-3})$
- extremely sensitive to the resonance multipolarity
- decay to GS: strength of resonances
- decay to low-lying: sensitive to the wavefuctions
- direct decay complementary to inelastic scattering data (based on not well known assumption – reaction model, optical potential)
- $\bullet\,$ compound $\gamma\text{-decay}$ should be taken into account for a comparison with experimental data

Giant Resonances PVC

Giant Resonances Theoretical description

Giant Resonances PVC

Giant Resonances Theoretical description

Particle-Vibration Coupling (PVC) vertex ••

- In the past: many phenomenological calculations with uncontrolled inputs
- Microscopic calculations are now feasible. From Hartree or Hartree-Fock with V_{eff} (assuming this includes short-range correlations), add PVC on top of it. All calculated using the same Hamiltonian or EDF consistently.

- Pioneering Skyrme calculation by V. Bernard and N. Van Giai in the 80s (neglect of the velocity-dependent part of V_{eff} in the PVC vertex). *Nucl. Phys.* A348(1980)75.
- RMF + PVC calculations have been done first by E. Litvinova and P. Ring. More results recently by E. Litvinova and A. Afanasjev.

Giant Resonances PVC

Particle-Vibration Coupling (PVC) vertex

In the version of PVC implemented here the treatment of the coupling is exact, namely we do not wish to make any approximation in the vertex.

$$\langle i \| V \| j, nJ \rangle = \sqrt{2J+1} \sum_{ph} X_{ph}^{nJ} V_J(ihjp) + (-)^{j_h - j_p + J} Y_{ph}^{nJ} V_J(ipjh)$$

The whole phonon wavefunction is considered, and all the terms of the Skyrme force enter the p-h matrix elements

$$V_J(\textit{ihjp}) = \sum_{\{m\}} (-)^{j_j - m_j + j_h - m_h} \langle j_i m_i j_j - m_j | JM
angle \langle j_p m_p j_h - m_h | JM
angle v_{\textit{ihjp}}$$

Consistent treatment of the coupling vertex in the Skyrme framework:

HF single particle states, RPA phonons, microscopic interaction in PVC vertex (G. Colò, H. Sagawa, P. F. Bortignon, *Phis. Rev.* **C82**(2010)64307)

Decay to the GS Decay to low-lying states

γ decay width $\odot \bullet$

$$\Gamma_{\gamma}(E\lambda; i \to f) \propto E^{2\lambda+1}B(E\lambda; i \to f)$$

REDUCED TRANSITION PROBABILITY

$$B(E\lambda; i
ightarrow f) = rac{1}{2J_i + 1} |\langle J_f \| Q_\lambda^{(E)} \| J_i
angle|^2$$

ELECTROMAGNETIC OPERATOR (LONG-WAVELENGTH LIMIT)

$$Q^{(E)}_{\lambda\mu} = \sum_{i=1}^{A} e^{\lambda}_{i} i^{\lambda} r^{\lambda}_{i} Y^{*}_{\lambda\mu}(\hat{\mathbf{r}}_{i})$$

EFFECTIVE CHARGE DUE TO NUCLEAR RECOIL

$$e_p^{\lambda} = e \left[\left(1 - rac{1}{A}
ight)^{\lambda} + (-)^{\lambda} rac{Z - 1}{A^{\lambda}}
ight] \qquad \qquad e_n^{\lambda} = e Z \left(-rac{1}{A}
ight)^{\lambda}$$

Decay to the GS Decay to low-lying states

γ decay to the ground state

Decay to the GS Decay to low-lying states

γ decay to low-lying states

NFT necessary: 12 diagrams contribute to the matrix element

Decay to the GS Decay to low-lying states

γ decay to low-lying states

NFT necessary: 12 diagrams contribute to the matrix element

Decay to the GS Decay to low-lying states

γ decay to low-lying states

Polarization

External field partially screened by the interaction with intermediate states

$$\begin{aligned} Q_{ij}^{\lambda pol} &= \langle i \| Q_{\lambda} \| j \rangle + \\ &\sum_{n'} \frac{1}{\sqrt{2\lambda + 1}} \left[\frac{\langle 0 \| Q_{\lambda} \| n' \lambda \rangle \langle i, n' \lambda \| V \| j \rangle}{(E_J - E_{J'}) - \hbar \omega_{\lambda} + i \frac{\Gamma_D}{2}} - \frac{\langle i \| V \| j, n' \lambda \rangle \langle n' \lambda \| Q_{\lambda} \| 0 \rangle}{(E_J - E_{J'}) + \hbar \omega_{\lambda} + i \frac{\Gamma_D}{2}} \right] \end{aligned}$$

Collective states Decay to GS Decay to a vibrational state

Results – ²⁰⁸Pb

- Decay of Isoscalar Giant Quadrupole Resonance (ISGQR) in ²⁰⁸Pb to the ground state and to the first $J^{\pi} = 3^{-}$ state
- Experiment at LNL in June 2010 (Acta Phys. Pol. B42(2011)653)
- Consistent approach to the coupling vertex:
 - Single particle states: HF
 - Phonons: self-consistent RPA with Skyrme functional
 - PVC Vertex: microscopic Skyrme interaction
- 4 Skyrme interactions: SLy5, SGII, SkP, LNS
- Submitted to PRC, http://arxiv.org/abs/1111.0619

$$V(\mathbf{r}_1, \mathbf{r}_2) = t_0(1 + x_0 P_\sigma)\delta(\mathbf{r}) + \frac{1}{2}t_1(1 + x_1 P_\sigma) \left[\mathbf{P}^{\prime 2}\delta(\mathbf{r}) + \delta(\mathbf{r})\mathbf{P}^2\right]$$
$$+ t_2(1 + x_2 P_\sigma)\mathbf{P}^{\prime} \cdot \delta(\mathbf{r})\mathbf{P} + \frac{t_3}{6}(1 + x_3 P_\sigma) \left[\rho(\mathbf{R})\right]^{\sigma}\delta(\mathbf{r})$$
$$+ iW_0\boldsymbol{\sigma} \cdot \left[\mathbf{P}^{\prime} \times \delta(\mathbf{r})\mathbf{P}\right]$$

Collective states Decay to GS Decay to a vibrational state

Energy and collectivity of the states

J^{π}	ISGQR		GQR 3 ⁻	
	E [MeV]	EWSR [%]	E [MeV]	$B(E3)\uparrow [10^5e^2\cdot \mathrm{fm}^6]$
SLy5	12.28	70	3.62	6.54
SGII	11.72	72	3.14	6.58
SkP	10.28	82	3.29	5.11
LNS	12.10	67	3.19	5.67
Exp.	10.9 <i>3</i>	100	2.6145 <i>3</i>	6.11 <i>9</i>

Experimental data from NDS108(2007)1583

Collective states Decay to GS Decay to a vibrational state

Decay to the GS

Interaction	Ecop[MeV]	Γ $_{\gamma}$ [eV]	
	-0QN[]	RPA	RPA'
SLy5	12.28	231.54	160
SGII	11.72	163.22	138
SkP	10.28	119.18	170
LNS	12.10	176.57	135
Speth et al., <i>PRC</i> 85 (1985)2310	10.60	112 –	theor.
Bortignon et al., <i>PLB148(1984)20</i>	11.20	142 – theor.	
Beene et al., <i>PLB</i> 164(1985)19	11.20	175 –	theor.
Beene et al., <i>PRC39(1989)1307</i>	10.60	130±40	– ехр.

Consistent with experimental value through an energy scaling ($\Delta E = 1$ MeV \Rightarrow increase Γ_{γ} by 50%)

Collective states Decay to GS Decay to a vibrational state

Decay to the 3⁻ state

Interaction	<i>E</i> _{tran} [MeV]	Γ_{γ} [eV]
SLy5	8.66	3.39
SGI	8.58	29.18
SkP	6.99	8.34
LNS	8.90	39.87
Speth et al., <i>PRC</i> 85 (1985)2310	7.99	4.00 – theor.
Bortignon et al., <i>PLB</i> 148 (1984)20	8.59	3.50 – theor.
Beene et al., <i>PRC39(1989)1307</i>	7.99	5.00±5.00 - <i>exp.</i>

Collective states Decay to GS Decay to a vibrational state

Decay to the 3⁻ state

Γ_{γ} for a typical ph at 8.5 MeV [eV] $\approx \overline{10^3}$

Γ_{γ} [eV] 3.39)
-----------------------------	---

Collective states Decay to GS Decay to a vibrational state

Decay to the 3⁻ state The SLy5 case

Γ_{γ} for a typical ph at 8.5 MeV [eV]	$pprox 10^3$
Recoupling	3
Quenching factors	
Γ _γ [eV]	3.39

Collective states Decay to GS Decay to a vibrational state

Decay to the 3⁻ state

Γ_γ for a typical p	h at 8.5 MeV [eV]	$pprox 10^3$
	Recoupling	3
Quenching factors	π – ν cancellation	3

$$\Gamma_{\gamma}$$
 [eV] 3.39

$$Q_{ij} = \left(\tau_z - \frac{N-Z}{A}\right)_j \langle i \| r^\lambda Y_\lambda \| j \rangle$$

Collective states Decay to GS Decay to a vibrational state

Decay to the 3⁻ state

Γ_{γ} for a typical ph at 8.5 MeV [eV] $~~\approx 10^3$			
	Recoupling	3	
Quenching factors	π – ν cancellation	3	
Quencining lactors	p – h cancellation	3 – 4	
	Γ $_{\gamma}$ [eV]	3.39	
	h = -p h h h	/	

Collective states Decay to GS Decay to a vibrational state

Decay to the 3⁻ state • The SLy5 case

	Γ_γ for a typical p	$pprox 10^3$	
	Quenching factors	Recoupling	3
		π – ν cancellation	3
		p – h cancellation	3 – 4
		Polarization factor	6
		Γ $_{\gamma}$ [eV]	3.39
×-	⊗ = × +	× ~ ~ *	_V
Dipole m	odes (in part. IVGDR dipole mo), as intermediate state ment of the particle	es, renormalize the

(polarization of the nuclear medium)

Conclusions •

- $\bullet\,$ Microscopic and consistent treatment of the γ decay
- $\bullet ~\gamma$ decay width to the GS not so able to discriminate between models
- γ decay width to the 3^- very sensitive to the interaction used
 - Dipole states
- Comparison with the experiment at LNL INFN (June 2010)
- Other closed shell nuclei: ⁹⁰Zr (LNL 2010),...
- PDR?

Backup Slides

The decay of the compound nucleus

$$\langle \Gamma_{\gamma 0}^{CN} \rangle = \frac{X(\lambda)b_{E\lambda}(E)\left(\frac{E}{\hbar c}\right)^{2\lambda+1}}{\rho_I(E)}$$

$$X(\lambda) = \frac{8\pi(\lambda+1)}{\lambda[(2\lambda+1)!!]^2}$$

- ρ_I(E) density of compound states with spin I at energy E
- *b*_{Eλ}(*E*) reduced transition probability per unit energy

In the original Bohr-Mottelson model, the phonons are treated as fluctuations δU of the mean field U and their properties are taken from experiment.

γ decay width lacksquare

$$\Gamma_{\gamma}(Ej; i \to f) = \frac{8\pi(2j+1)}{j[(2j+1)!!]^2} \left(\frac{E}{\hbar c}\right)^{2j+1} B(Ej; i \to f)$$