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A unified theory for nuclear structure, reactions and stars

The Energy Density Functional (EDF) Concept
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@ Mean field for

ground-state nuclear
structure (HF, HFB,..)

@ RPA and QRPA for
small-amplitude
oscillations

@ Beyond small-
amplitude
oscillations: time-
dependent mean field
for dynamics (TDHF,
TDHFB,...)

@ Beyond-mean -
field models
(correlations).

- Describing
complex phenomena

- Improving the
\predictive power




Beyond-mean-field models. Some examples

- Single-particle and collective degrees of freedom are
coupled (generator-coordinate method, particle-vibration coupling,...)

- Single-particle and multi-particle degrees of freedom

are coupled (variational multiparticle-multihole configuration mixing,
second RPA,...)

- Correlations are explicitly included in the ground

state (extensions of RPA and SRPA, generator-coordinate method,
variational multiparticle-multihole configuration mixing,...)



Ground state. Individual degrees
of freedom. Uncorrelated state,
but correlations explicitely in the

functional Kohn-Sham (DFT)

— | Dynamical properties.

TDDFT

Particle-vibration
coupling

in progress

Second
RPA

Beyond mean field. Coupling single-
particle and collective coordinates or
multiparticle configurations

Ground state. Individual degrees
of freedom. Uncorrelated state.

Mean field HF (EDF)

\ properties. TDHF : _—
Small amplitude limit.

Dynamical

(Q)RPA (collective

states)

Mean field level but with
quasiparticles. Pairing
correlations are added.

Dynamical properties.

TDHFB

HFB ot HF +BCS

Beyond mean field. More general
ground state (not a simple Slater
determinant)

GCM

| multiparticle-multihole lext. RPA ‘

—

_



Nuclear physics:
phenomenological
effective interactions
adjusted at the mean-

field level (double
counting?)

How to handle beyond-
mean-field theories:
two issues

‘ When the interaction
has zero range ->
ultraviolet divergence

in some cases



Some examples:

Pairing with a zero-range interaction (within the
mean-field approximation)

Models with particle-vibration coupling (see talk
of Marco Brenna)

Second RPA (see talk of Danilo Gambacurta)



Some solutions:

* Pairing with a zero-range interaction
(within the mean-field approximation)

Add and substract a quantity easy to handle which has the same divergent
behavior as the divergent quantity of the theory. Pseudopontential method to
extract the regulated part.

- Bruun, Castin, Dum, Burnett, Eur. Phys. J. D 7, 433 (1999)
- Grasso, Urban, PRA 68, 033610 (2003)

- Bulgac, Yu, PRL 88, 042504 (2002)



Grasso, Urban, PRA 68, 033610 (2003)

A(R)=—

The anomalous density diverges
with a zero-range pairing
interaction

g is the
coupling

constant of
the delta
interaction.

Pseudopotential
prescription (for a

quantity that diverges
as 1/r for r->0)




Grasso, Urban, PRA 68, 033610 (2003)

g is the
coupling
8 r r constant of

interaction.

In practice, Eq. (8) is evaluated as follows: It is possible

to show that the exmctation value S‘PI(R +r2)V (R
—r/2)2 diverges as A/(4mr) when r—0 if a zero-range in-
teraction 1s used. Now one adds and subtracts from this ex-
pectation value the quantity YAR)GY(R,r), where G?L 18
Green’s function associated to the single-particle Hamil-

tonian H,
5 Re " ¢0*(R_ 5) Diverges as
“ 2/ 2
Gz(R,r)=2 O | 1/(27rr) when r—0
@ Ea—/.l,

where ¢2 denotes the eigenfunction of H,y with eigenvalue

0
Ea—#.
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Renormalization of the Hartree-Fock-Bogoliubov Equations in the Case

HFB
calculation
done with a
Woods-Saxon
potential with
fixed
parameters
corresponding
to the nucleus
110Sn and with
a zero-range
pairing force

of a Zero Range Pairing Interaction

Aurel Bulgac and Yongle Yu
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The neutron pairing field (17) as a function of the
radial coordinate and the cutoff energy E.. Upward various
curves correspond to E. = 20,30, 35,40, 45, and 50 MeV, re-
spectively. On the scale of the figure the last two curves are

indistinguishable.



Beyond mean-field theories
with zero-range effective

Interactions. How to handle
the ultraviolet divergence at
second order ?
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Zero-range effective interactions are commonly used in nuclear physics and in other domains to
describe many-body systems within the mean-field model. If they are used within a beyond-mean-field
framework, contributions to the total energy that display an ultraviolet divergence are found. We propose a
general strategy to regularize this divergence and we illustrate it in the case of the second-order
corrections to the equation of state (EOS) of uniform symmetric matter. By setting a momentum cutoff
A, we show that for every (physically meaningful) value of A it is possible to determine a new interaction
such that the EOS with the second-order corrections reproduces the empirical EOS, with a fit of the same
quality as that obtained at the mean-field level.

... with a momentum cutoff

In the case of effective interactions between point-
nucleons, the cutoff A must certainly be smaller than the
momentum associated with the nucleon size, i.e., smaller
than = 2 fm~!. In fact, these interactions are used to
describe giant resonances or rotational bands of nuclei
and consequently the scale should be even smaller, perhaps
around 0.5 fm~'. However. our orocedure is tailored on the

FIG. 1. First- and second-order diagrams for the total energy in
uniform matter. Labels refer to momentum states.



Skyrme interaction

V(ry,n) =

tg(1+ x0P,)(r) terme central -

+%t1 (1+x,P,)[P25(r) + 5(r)P2] +4,(1+x,P,) P - 8(r)P termes non-locaux

+2ty(1+ 2,P,) [p(R)]*6(r) terme dépendant =
6 .
de la densité

+iWp o - [P' X O(r) P] terme spin-orbite



Let us write the zero-range force as

Symmetric
V(r, ;) = gd(r; — ry). nuclear
matter; t,-t,
To make contact with the Slkvrme interactions [1] the model

strength g is written as f; + %13 p® and this corresponds
to the so-called (g, t2) mouet

. E, . 3n (3x \23 3 |
Mean field £ ) = 1o (T") +gtop+ o 13p ",
Second- NTER ' f
order @m)° Ji k< i + gl —al >k
2
: X &3k, d3k,d> =
correction R
- Cqusz(q),

d=(n2-n)/2, n being the level of degeneracy (4 for symmetric nuclear matter)



Corrected equation of state. Linear

divergence in the momentum cutoff
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FIG. 2 (color online). (a) E/A + AE/A as a function of the
density and for different values of the cutoff A. The SkP mean-
field EOS (solid black line) i1s shown for comparison.
(b) Correction AE/A for different values of A.

Moghrabi, Grasso, Colo, Van Giai, Phys. Rev. Lett. 105, 262501 (2010)



Equation of state after the fit
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FIG. 4 (color online). (a) Second-order-corrected equations of
state compared with the reference equation of state (SkP at
mean-field level). (b) Extreme case of A = 350 fm™!.

Moghrabi, Grasso, Colo, Van Giai, Phys. Rev. Lett. 105, 262501 (2010)



New parameters for each cutoff

TABLE I. From the second line, columns 2, 3, and 4: parameter sets obtained in the fits associated with different values of the cutoff
A compared with the original set SkP (first line). In the fifth column the y*/N value (y* divided by the number of fitted points)
associated to each fit is shown. In columns 6 and 7 the saturation point is shown.

Iy (MeV ffrl}) I (MeV fm3+3“) (43 Xz/N Po (fm—3) E/A(p(]) (MeV)
SkP ~2931.70 1870897 1/6 0.16 ~15.95
A =05 fm™! ~2352.900 15379.861 0217 0.000 04 0.16 ~15.96
A=1fm" ~1155.580 9435.246 0.572 0.001 42 0.17 ~16.11
A=15fm" ~754.131 8278.251 1.011 0.00106 0.17 ~16.09
A=2fm™" ~632.653 5324.848 0.886 0.00192 0.16 ~1582
A =350 fm™! ~64.904 360.039 0.425 0.00042 0.16 ~15.88

Moghrabi, Grasso, Colo, Van Giai, Phys. Rev. Lett. 105, 262501 (2010)



Extended case. The full Skyrme
interaction and both symmetric and
asymmetric matter

* Analytical study: the divergence is now A° due to
the velocity-dependent terms of the interaction

* Cutoff regularization for both symmetric and
asymmetric matter

* Adjustment of parameters (reference EOS: Sly5)




E/A (MeV)
B =
=)

E/A (MeV) |
S hh © we

E/A (MeV)
— b W wn
cCoCc oo

Three equations of state

thh ©

[om—
wn
] 1

SLYS

[

SLYS5

A=10fm
A=15fm
A=20fm

k=

]
1
SLYS

]
0.4

A=05 fm '
A=10 fm:
A=15fm"
A=20 fm"

A=05fm :

1
1

1

A=05fm"
A=10fm’
A=15 fm:
A=20fm"

Symmetric
matter

Asymmetric
matter

Neutron

matter




Pressure/density and incompressibility

Press

Incompr. (MeV)
N OB o
S 8 8
] | | I

ISI

=

0.4




Sets of parameters for each cutoff

SLyb

t() tl t2 t3 o I I I3 (8
-2484.88 483.13 -549.40 13736.0 0.778 -0.328 -1.0 1.267 0.16667

A(fm~1)
0.5
1.0
1.5
2.0

-2782.829 473.127 269.686 13322.999 0.897 -0.327 -1.005 1.379 0.0989
-2554.419 758.941 248.433 9331.697 0.852 0.811 -0.900 0.971 0.0111
-779.936 1127.769 -941.203 4428.398 1.135 0.119 -0.568 -0.403 0.813
-585.187 579.808 -596.216 4903.544 0.973 -0.323 -0.662 1.780 0.9002




Perspectives

Other renormalization procedures (dimensional
renormalization -> unique set of parameters)

Applications to finite nuclei

Particle-vibration coupling models (formal and
numerical work)

... other beyond-mean-field theories?



