IPN-Orsay - 14 November 2011 LEA COLLIGA MEETING

Beyond mean-field models with zero-range effective interactions: A way too handle the ultraviolet divergence

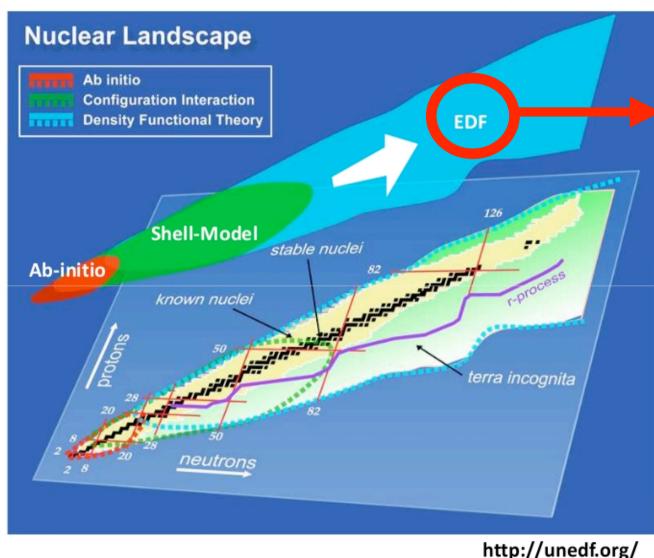
Marcella Grasso

Milano-Orsay collaboration

- PhD thesis K. Moghrabi, Orsay
- Moghrabi, Grasso, Colò, Van Giai, Beyond Mean-Field Theories with Zero-Range Effective Interactions: A Way to Handle the Ultraviolet Divergence, PRL 105, 262501 (2010)
- Moghrabi, Grasso, Roca-Maza, Colò, Second-order equation of state with the full Skyrme interaction: toward new effective interactions for beyond mean-field models, in preparation
- 3 months visitor in IPN Orsay, Marco Brenna. Particlevibration coupling models: starting applications to nuclei

A unified theory for nuclear structure, reactions and stars

The Energy Density Functional (EDF) Concept



Mean field for ground-state nuclear structure (HF, HFB,..)

RPA and QRPA for small-amplitude oscillations

Beyond smallamplitude oscillations: timedependent mean field for dynamics (TDHF, TDHFB,...)

Beyond-mean field models (correlations).

- Describing complex phenomena

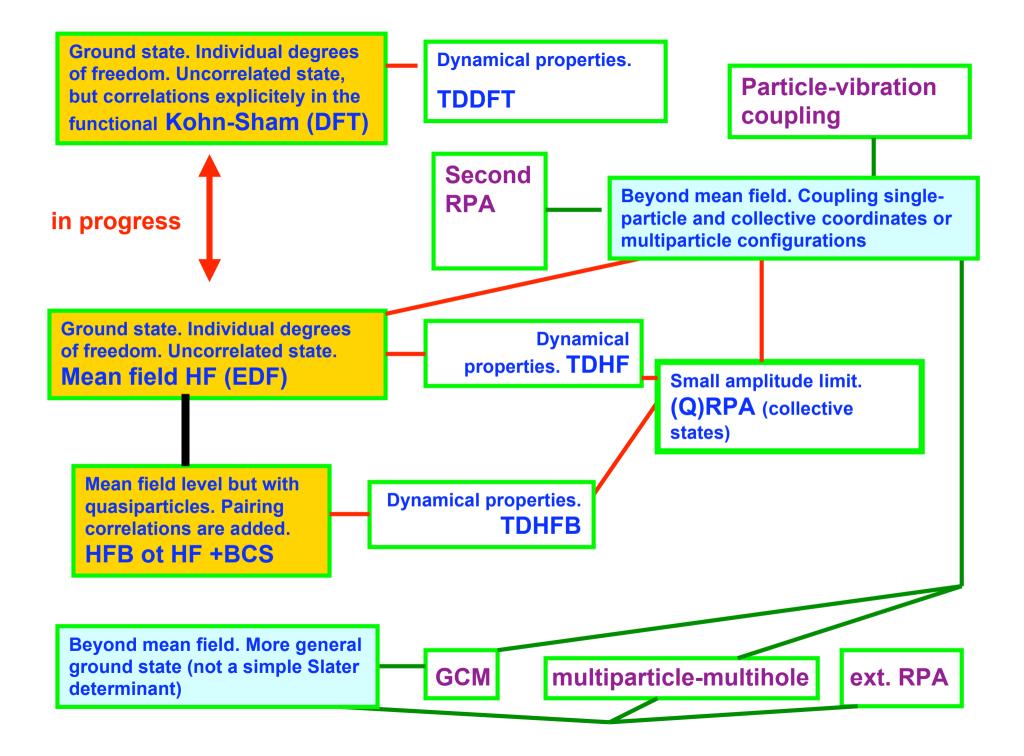
- Improving the predictive power

Beyond-mean-field models. Some examples

- Single-particle and collective degrees of freedom are coupled (generator-coordinate method, particle-vibration coupling,...)

- Single-particle and multi-particle degrees of freedom are coupled (variational multiparticle-multihole configuration mixing, second RPA,...)

- Correlations are explicitly included in the ground state (extensions of RPA and SRPA, generator-coordinate method, variational multiparticle-multihole configuration mixing,...)



How to handle beyondmean-field theories: two issues Nuclear physics: phenomenological effective interactions adjusted at the meanfield level (double counting?)

When the interaction has zero range -> ultraviolet divergence in some cases

Some examples:

- Pairing with a zero-range interaction (within the mean-field approximation)
- Models with particle-vibration coupling (see talk of Marco Brenna)
- Second RPA (see talk of Danilo Gambacurta)

Some solutions:

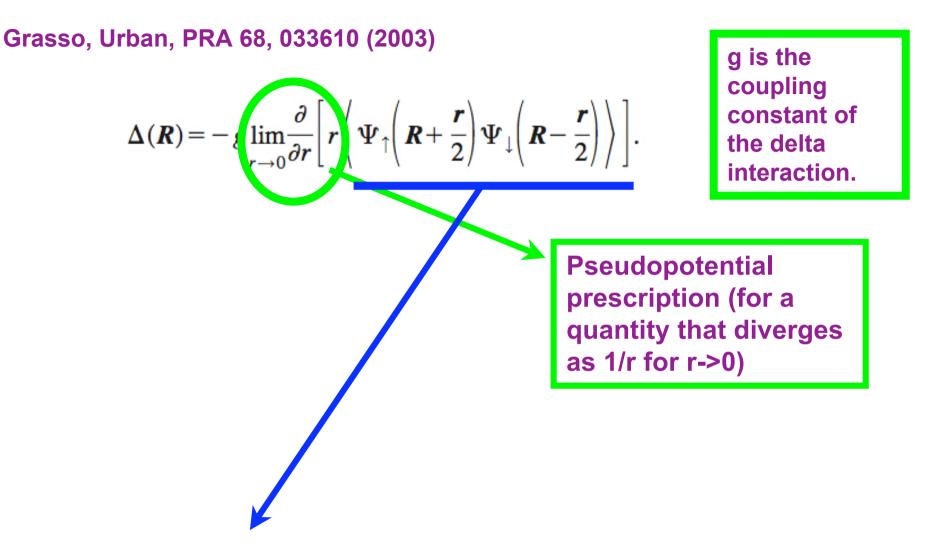
• Pairing with a zero-range interaction (within the mean-field approximation)

Add and substract a quantity easy to handle which has the same divergent behavior as the divergent quantity of the theory. Pseudopontential method to extract the regulated part.

- Bruun, Castin, Dum, Burnett, Eur. Phys. J. D 7, 433 (1999)

- Grasso, Urban, PRA 68, 033610 (2003)

- Bulgac, Yu, PRL 88, 042504 (2002)



The anomalous density diverges with a zero-range pairing interaction Grasso, Urban, PRA 68, 033610 (2003)

$$\Delta(\mathbf{R}) = -g \lim_{r \to 0} \frac{\partial}{\partial r} \left[r \left\langle \Psi_{\uparrow} \left(\mathbf{R} + \frac{\mathbf{r}}{2} \right) \Psi_{\downarrow} \left(\mathbf{R} - \frac{\mathbf{r}}{2} \right) \right\rangle \right]. \quad (8)$$

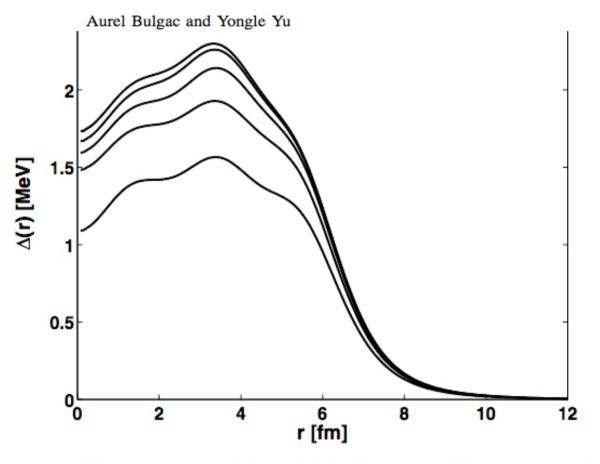
In practice, Eq. (8) is evaluated as follows: It is possible to show that the expectation value $\langle \Psi_{\uparrow}(\mathbf{R}+\mathbf{r}/2)\Psi_{\downarrow}(\mathbf{R}-\mathbf{r}/2)\rangle$ diverges as $\Delta/(4\pi r)$ when $r \rightarrow 0$ if a zero-range interaction is used. Now one adds and subtracts from this expectation value the quantity $\frac{1}{2}\Delta(\mathbf{R})G^{0}_{\mu}(\mathbf{R},\mathbf{r})$, where G^{0}_{μ} is Green's function associated to the single-particle Hamiltonian H_{0} , g is the coupling constant of the delta interaction.

 $G^{0}_{\mu}(\boldsymbol{R},\boldsymbol{r}) = \sum_{\alpha} \frac{\phi^{0}_{\alpha}\left(\boldsymbol{R} + \frac{\boldsymbol{r}}{2}\right)\phi^{0*}_{\alpha}\left(\boldsymbol{R} - \frac{\boldsymbol{r}}{2}\right)}{\epsilon^{0}_{\alpha} - \mu}, \quad \text{Diverges as} \quad 1/(2\pi r) \text{ when } \boldsymbol{r} \to 0$

where ϕ_{α}^{0} denotes the eigenfunction of H_{0} with eigenvalue $\epsilon_{\alpha}^{0} - \mu$.

Renormalization of the Hartree-Fock-Bogoliubov Equations in the Case of a Zero Range Pairing Interaction

HFB calculation done with a Woods-Saxon potential with fixed parameters corresponding to the nucleus ¹¹⁰Sn and with a zero-range pairing force



The neutron pairing field (17) as a function of the radial coordinate and the cutoff energy E_c . Upward various curves correspond to $E_c = 20, 30, 35, 40, 45$, and 50 MeV, respectively. On the scale of the figure the last two curves are indistinguishable.

Beyond mean-field theories with zero-range effective interactions. How to handle the ultraviolet divergence at second order ?

Beyond Mean-Field Theories with Zero-Range Effective Interactions: A Way to Handle the Ultraviolet Divergence

K. Moghrabi,^{1,2} M. Grasso,¹ G. Colò,³ and N. Van Giai¹

¹Institut de Physique Nucléaire, IN2P3-CNRS, Univ. Paris-Sud, F-91406 Orsay Cedex, France ²Université Claude Benard Lyon 1, École Normale Supérieure de Lyon, 69364 Lyon Cedex, France ³Dipartimento di Fisica, Università degli Studi di Milano and INFN, Sezione di Milano, 20133 Milano, Italy (Received 3 September 2010; published 23 December 2010)

Zero-range effective interactions are commonly used in nuclear physics and in other domains to describe many-body systems within the mean-field model. If they are used within a beyond-mean-field framework, contributions to the total energy that display an ultraviolet divergence are found. We propose a general strategy to regularize this divergence and we illustrate it in the case of the second-order corrections to the equation of state (EOS) of uniform symmetric matter. By setting a momentum cutoff Λ , we show that for every (physically meaningful) value of Λ it is possible to determine a new interaction such that the EOS with the second-order corrections reproduces the empirical EOS, with a fit of the same quality as that obtained at the mean-field level.

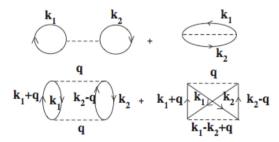


FIG. 1. First- and second-order diagrams for the total energy in uniform matter. Labels refer to momentum states.

... with a momentum cutoff

In the case of effective interactions between pointnucleons, the cutoff Λ must certainly be smaller than the momentum associated with the nucleon size, i.e., smaller than $\approx 2 \text{ fm}^{-1}$. In fact, these interactions are used to describe giant resonances or rotational bands of nuclei and consequently the scale should be even smaller, perhaps around 0.5 fm⁻¹. However, our procedure is tailored on the

Skyrme interaction

 $V(\mathbf{r}_{1}, \mathbf{r}_{2}) = t_{0} (1 + x_{0}P_{\sigma}) \,\delta(\mathbf{r}) \quad \text{terme central}$ $+ \frac{1}{2} t_{1} (1 + x_{1}P_{\sigma}) \left[\mathbf{P}^{'2} \delta(\mathbf{r}) + \delta(\mathbf{r}) \mathbf{P}^{2} \right] + t_{2} (1 + x_{2}P_{\sigma}) \,\mathbf{P}^{'} \cdot \delta(\mathbf{r}) \mathbf{P} \quad \text{termes non-locaux}$ $+ \frac{1}{6} t_{3} (1 + x_{3}P_{\sigma}) \left[\rho \left(\mathbf{R} \right) \right]^{\alpha} \,\delta(\mathbf{r}) \quad \text{terme dépendant}$ $de \ \text{la densit\acute{e}}$ $+ iW_{0} \,\sigma \cdot \left[\mathbf{P}^{'} \times \delta(\mathbf{r}) \,\mathbf{P} \right] \quad \text{terme spin-orbite}$

Let us write the zero-range force as

Ν

$$V(\mathbf{r}_1, \mathbf{r}_2) = g \,\delta(\mathbf{r}_1 - \mathbf{r}_2).$$

To make contact with the Skyrme interactions [1] the strength g is written as $t_0 + \frac{1}{6}t_3\rho^{\alpha}$ and this corresponds to the so-called (t_0, t_3) model

Symmetric nuclear matter; t₀-t₃ model

lean field
$$\frac{E}{A}(\rho) = \frac{3\hbar^2}{10m} \left(\frac{3\pi^2}{2}\rho\right)^{2/3} + \frac{3}{8}t_0\rho + \frac{1}{16}t_3\rho^{\alpha+1}.$$

Second-
order
correction
$$\Delta E = d \frac{\Omega^3}{(2\pi)^9} \int_{k_1,k_2 < k_F, |\mathbf{k}_1 + \mathbf{q}|, \mathbf{k}_2 - \mathbf{q}| > k_F} \times d^3k_1 d^3k_2 d^3q \frac{v^2}{\epsilon_{\mathbf{k}_1} + \epsilon_{\mathbf{k}_2} - \epsilon_{\mathbf{k}_1 + \mathbf{q}} - \epsilon_{\mathbf{k}_2 - \mathbf{q}}} = C \int dq v^2 G(q),$$

d=(n²-n)/2, n being the level of degeneracy (4 for symmetric nuclear matter)

Corrected equation of state. Linear divergence in the momentum cutoff

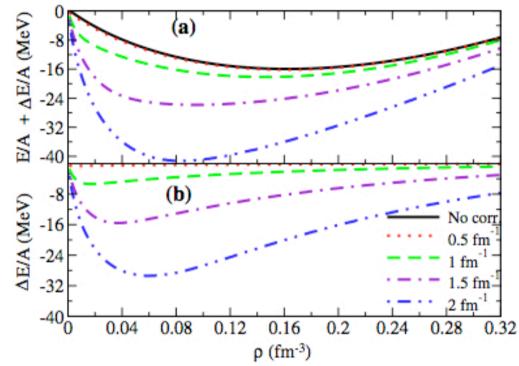


FIG. 2 (color online). (a) $E/A + \Delta E/A$ as a function of the density and for different values of the cutoff Λ . The SkP mean-field EOS (solid black line) is shown for comparison. (b) Correction $\Delta E/A$ for different values of Λ .

Moghrabi, Grasso, Colò, Van Giai, Phys. Rev. Lett. 105, 262501 (2010)

Equation of state after the fit

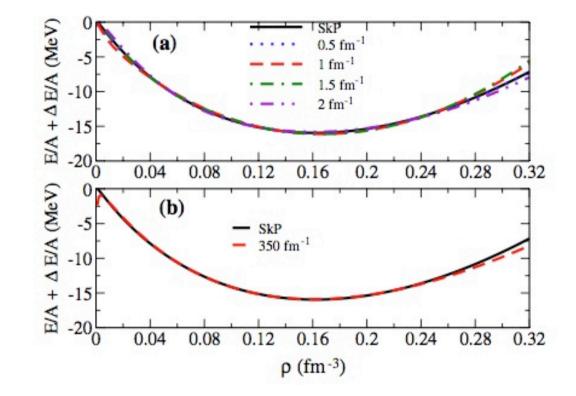


FIG. 4 (color online). (a) Second-order-corrected equations of state compared with the reference equation of state (SkP at mean-field level). (b) Extreme case of $\Lambda = 350 \text{ fm}^{-1}$.

Moghrabi, Grasso, Colò, Van Giai, Phys. Rev. Lett. 105, 262501 (2010)

New parameters for each cutoff

TABLE I. From the second line, columns 2, 3, and 4: parameter sets obtained in the fits associated with different values of the cutoff Λ compared with the original set SkP (first line). In the fifth column the χ^2/N value (χ^2 divided by the number of fitted points) associated to each fit is shown. In columns 6 and 7 the saturation point is shown.

	$t_0 \text{ (MeV fm}^3\text{)}$	t_3 (MeV fm ^{3+3α})	α	χ^2/N	$ ho_0 ({\rm fm}^{-3})$	$E/A(\rho_0)$ (MeV)
SkP	-2931.70	18 708.97	1/6		0.16	-15.95
$\Lambda=0.5~{ m fm}^{-1}$	-2352.900	15 379.861	0.217	0.000 04	0.16	-15.96
$\Lambda = 1 \; { m fm}^{-1}$	-1155.580	9435.246	0.572	0.001 42	0.17	-16.11
$\Lambda = 1.5~{ m fm}^{-1}$	-754.131	8278.251	1.011	0.001 06	0.17	-16.09
$\Lambda=2~{ m fm}^{-1}$	-632.653	5324.848	0.886	0.001 92	0.16	-15.82
$\Lambda = 350 \text{ fm}^{-1}$	-64.904	360.039	0.425	0.000 42	0.16	-15.88

Moghrabi, Grasso, Colò, Van Giai, Phys. Rev. Lett. 105, 262501 (2010)

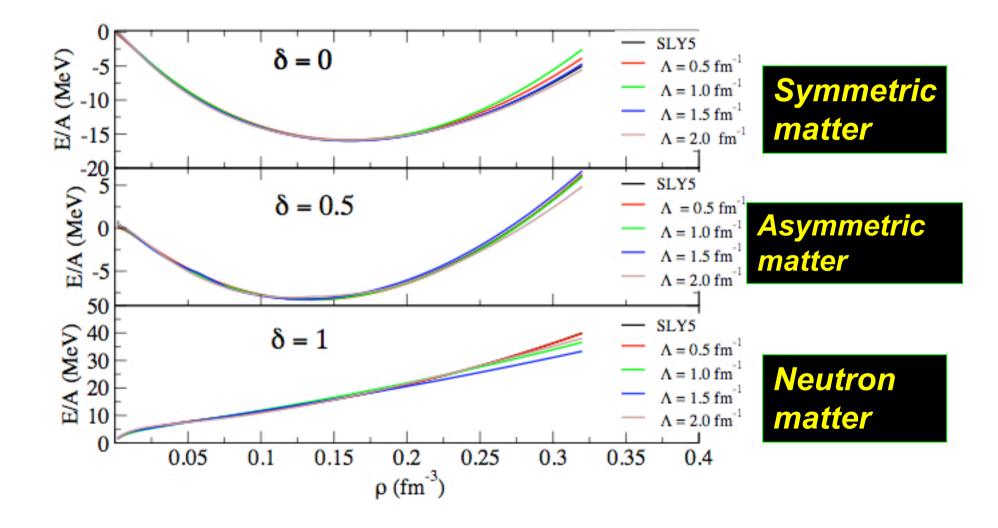
Extended case. The full Skyrme interaction and both symmetric and asymmetric matter

* Analytical study: the divergence is now Λ^5 due to the velocity-dependent terms of the interaction

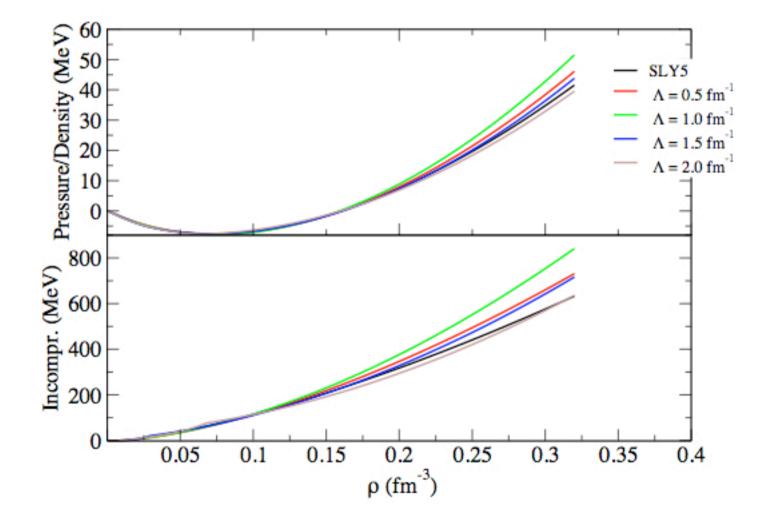
* Cutoff regularization for both symmetric and asymmetric matter

* Adjustment of parameters (reference EOS: Sly5)

Three equations of state



Pressure/density and incompressibility



Sets of parameters for each cutoff

	t_0	t_1	t_2	t_3	~	-	x_2		
SLy5	-2484.88	483.13	-549.40	13736.0	0.778	-0.328	-1.0	1.267	0.16667
$\Lambda({ m fm}^{-1})$									
0.5	-2782.829	473.127	269.686	13322.999	0.897	-0.327	-1.005	1.379	0.0989
1.0	-2554.419	758.941	248.433	9331.697	0.852	0.811	-0.900	0.971	0.0111
1.5	-779.936	1127.769	-941.203	4428.398	1.135	0.119	-0.568	-0.403	0.813
2.0	-585.187	579.808	-596.216	4903.544	0.973	-0.323	-0.662	1.780	0.9002

Perspectives

- Other renormalization procedures (dimensional renormalization -> <u>unique set of parameters</u>)
- Applications to finite nuclei
- Particle-vibration coupling models (formal and numerical work)
- ... other beyond-mean-field theories?