Status of the GALILEO Project

INFN

Călin A. Ur INFN Sezione di Padova

on behalf of the Galileo Collaboration

5th Meeting LEA-COLLIGA, IPN Orsay - Paris, November 14-16, 2011

OUTLINE

- Motivation
- The GALILEO project
 - Physics case
 - Mechanical design
 - Electronics R&D
 - Ancillary detectors
- Perspectives

Motivation

- The GALILEO project
 - Physics case
 - Mechanical design
 - Electronics R&D
 - Ancillary detectors
- Perspectives

GAMMA-RAY SPECTROSCOPY AT LNL nowadays

AGATA will conclude the physics campaign at LNL by the end of December AGATA D – 2010 European Collaboration 5 triple cluster detector ϵ_{ph} (1.3MeV) ~ 6%

Coupled to the PRISMA magnetic spectrometer

Beam time distribution Sept. 28, 2011 – Mar. 14, 2012

GAMMA–RAY SPECTROSCOPY AT LNL sometime in the future

GALILEO – 2012 new gamma–ray array

European Collaboration

take advantage of the recent technical
developments for AGATA
preamplifiers, digital sampling,
preprocessing, DAQ
→ high counting rates (50 kHz/det)

use of existing detectors EB cluster detectors capsules GASP detectors → high photopeak efficiency

use beam facilities at LNL Tandem, ALPI, PIAVE – stable SPES – RIB

→ production of new nuclei

THE HEAVY IONS ACCELERATORS AT LNL

THE HEAVY IONS ACCELERATORS AT LNL

PIAVE HI Injector

ALPI Linac 40 MVeq

Tandem XTU 15 MV

- Motivation
- The GALILEO project
 - Physics case
 - Mechanical design
 - Electronics R&D
 - Ancillary detectors
- Perspectives

PHYSICS CASE

- INFN Sezione di Padova
- INFN Laboratori Nazionali di Legnaro, Legnaro
- INFN Sezione di Milano
- INFN Sezione di Firenze
- Univerita degli Studi di Padova
- Universita degli Studi di Milano
- Universita degli Studi Firenze
- Institut fur Kernphysik, Universität zu Köln
- The Niewodniczanski Institute of Nuclear Physics, PAN, Krakow, Poland
- CSNSM/IN2P3/CNRS, Orsay, France
- INRNE, BAS, Sofia, Bulgaria
- University of the West of Scotland, Paisley, UK
- Department of Physics, Lund University, Lund, Sweden
- Department of Nuclear and Particle Physics, Uppsala University, Uppsala, Sweden
- Royal Institute of Technology, Stockholm, Sweden
- Instituto de Fisica Corpuscular, Valencia, Spain
- Institut fur Kernphysik, Technische Universitat Darmstadt, Germany
- CISC and Departamento de Fisica Teorica C-IX, Universidad Autonoma de Madrid, Spain
- Physik-Department E12, Technische Universitat Munchen, Garching, Germany
- IPHC, Strasbourg, France
- Simon Fraser University, Burnaby, B.C., Canada
- TRIUMF, Vancouver, B.C., Canada
- Horia Hukubei National Institute for Physics and Nuclear Engineering, Bucharest–Magurele, Romania
- Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, Brasil
- University of Warsaw, Poland
- School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK

2009 - call for Letters of Intent

PHYSICS CASE – MAIN TOPICS

- structure of N~Z nuclei
- isospin symmetry
- study of neutron-rich nuclei
- exotic decay of high-spin states
- nuclear structure close to ¹⁰⁰Sn
- cluster and highly deformed states in sd-shell nuclei
- giant resonances and warm rotations
- symmetries and shape-phase transitions in nuclei
- shape coexistence in neutron-deficient nuclei
- g factor measurements
- measurement of astrophysical interest cross sections surrogate NR method

- Motivation
- The GALILEO project
 - Physics case
 - Mechanical design
 - Electronics R&D
 - Ancillary detectors
- Perspectives

THE GALILEO ARRAY – DETECTORS

capsules of the EUROBALL cluster detectors

GASP tapered detectors

40 n–type HPGe detectors FWHM < 2.4 keV @ 1332.5 keV ε_{int} ~80% @ 1332.5 keV P/T ~ 25% (⁶⁰Co source)

40 BGO anti–Compton shields P/T ~ 60% (⁶⁰Co source)

GALILEO R&D - MECHANICS

- Development of the triple cryostat
 - end–cap in carbon fiber
 - dewar
 - internal cabling
 - optimizing the thermal conduction (LN₂ consumption)
- Design of the anti-Compton shield
 - recovery of the individual EB cluster BGO crystals
- Design of the holding structure
 - more space for ancillary detectors
 - flexible configuration (modifiable target-detectors distance, easy mounting of ancillary detectors)
 - modify the LN₂ and vaccum system
- Design of the mechanical structure for G.GALILEO
 - g–factor measurement setup

ANTI-COMPTON SHIELDS FOR THE TRIPLE CLUSTER DETECTORS

a proposal for the construction of the triple cluster AC shield out of the individual crystals of the original EB cluster shield

 \rightarrow one can build only one new shield from the original one

 recently moved one EB cluster AC shield to Legnaro
 investigate the possibility of safely dismounting the crystals and phototubes

ASSEMBLED TRIPLE CLUSTER DETECTOR

P/T ~ 40%

4m

GEANT4 by E.Farnea

1000

200

1200

1400

1600

1800

2000

Need of shared suppression among neighboring detectors to improve P/T

MOUNTING OF THE TRIPLE CLUSTERS

GALILEO – GEANT4 SIMULATION

Mixed configuration 30 GASP detectors @ 22.5cm 5 5 5 5 5 5 29° 51° 59° 121° 129° 151° 10 triple cluster @ 24cm 90° Definition of the new triple cluster detectors

- symmetrical coverage of the solid angle (ang. distr., DSAM)
- good granularity
- at 90° detectors have relatively lower solid angle aperture
- anti–Compton shields
 - for GASP detectors already available
 - for the triple clusters new AC shields
- Ilimited impact on the array performance when dismounting the first ring of detectors to allow insertion of ancillary detectors

ε_{ph} ~ 8% P/T ~ 50%

HOLDING STRUCTURE OF THE ARRAY

HOLDING STRUCTURE OF THE ARRAY

HOLDING STRUCTURE OF THE ARRAY

Experimental Hall II - replacing GASP

Experimental Hall II - replacing GASP

- Motivation
- The GALILEO project
 - Physics case
 - Mechanical design
 - Electronics R&D
 - Ancillary detectors
- Perspectives

GALILEO R&D – ELECTRONICS

- New electronics is being built in close synergy with AGATA
 - new cold part (AGATA FET)
 - use solutions already developed for AGATA
 - core type preamplifiers
 - differential output
 - one single range but extended to ~ 10 MeV
 - suitable also for the GASP detectors (mechanics, FET, AC/DC)
 - no pulser
 - GTS
 - AGAVA interface with the VME electronics (colab. With Kracow)
 - new developments for AGATA and GALILEO
 - low power digitizers
 - readout and preprocessing on PCI express boards
 - anti–Compton shields signal readout
 - digital (similar to the Ge detectors)

READOUT AND PREPROCESSING ELECTRONICS – PURPOSE

- Cost reduction
- Power consumption reduction
- Integrated compact solution: physically different objects integrated in one object (easier to scale and less cumbersome)
 Requirements:
- Backward compatibility: new solutions must be back compatible with other existing AGATA subsystems (GTS, digitizers).
- Synergy and reuse of HW/FW/SW: the new acquisition system can be used for other projects (i.e. GALILEO and maybe others).

READOUT AND PREPROCESSING ELECTRONICS – PURPOSE

READOUT AND PREPROCESSING **ELECTRONICS – TEST**

D.Bortolato

READOUT AND PREPROCESSING ELECTRONICS – TEST

5th Meeting LEA-COLLIGA, IPN Orsay - Paris, November 14-16, 2011

D.Bortolato

- Motivation
- The GALILEO project
 - Physics case
 - Mechanical design
 - Electronics R&D
 - Ancillary detectors
- Perspectives

GALILEO AND ANCILLARY DETECTORS

Study of weak reaction channels or weakly populated structures

5th Meeting LEA-COLLIGA, IPN Orsay - Paris, November 14-16, 2011

- Motivation
- The GALILEO project
 - Physics case
 - Mechanical design
 - Electronics R&D
 - Ancillary detectors
- Perspectives

PERSPECTIVES

4π configuration with triple clusters 40 detectors@24cm – $ε_{ph}$ ~15%

Advantages:

uniforme coverage of the solid angle
anti-Compton shields more efficient
removing detectors has less impact on the overall performace of the array
good granularity

Disadvantages: •anti–Compton shields not available → high cost

Need of a wide European collaboration

- initiated discussions inside the EGAN Scientific Committee (July 2011)
- collaboration with IPN Orsay for developing AC shields

TIME SCALE

- Technical design of the triple cryostat ready
 - First prototype December 2011
 - Second prototype June 2012
- Readout board prototype September 2011
- Digitizer prototype December 2011
- Preamplifiers (cold and warm) production December 2011
- Holding structure design
 - definition July 2011
 - technical design beginning of 2012
- Definition of the anti–Compton shield November 2011
- Production (cryostats, anti–Compton shields, electronics, holding structure)
 2012

Start operation of GALILEO at the end of 2012

COLLABORATORS

- Mechanical design and production
 - Technical Service INFN Padova, Mechanical workshops INFN Padova, Legnaro, Milan
 - C.Fanin, M.Turcato
- Electronics developments
 - Nuclear physics groups INFN Padova and Milan
 - D.Bazzacco, M.Bellato, A.Pullia, D.Bortolato, R.Isocrate
- Vacuum and LN₂ filling systems
 - Users Service INFN Legnaro
 - D.Rosso, L.Costa, P.Cocconi
- Ancillary detectors integration
 - Nuclear physics group INFN Milan, IFJ PAN Cracow, Computing service– INFN Legnaro
 - S.Brambilla, N.Toniolo, P.Bednarczyk
- Beam line design
 - Accelerator Division INFN Legnaro, Nuclear physics group INFN Legnaro
 - A.Pisent, J.J.Valiente Dobon
- Monte Carlo simulations
 - Nuclear physics group
 INFN Padova
 - E.Farnea