Determination of Energy Density Functionals from Brueckner-Hartree-Fock calculations

> Nguyen Van Giai Institut de Physique Nucléaire Université Paris-Sud, Orsay

Collaboration: D. Gambacurta, U. Lombardo (Università di Catania) G. Colò (Università di Milano) L. Li (PKU), W. Zuo (IMP Lanzhou)

Phys. Rev. C 84, 024301 (2011)

14 November, 2011

Outline of talk:

 Motivation of the investigation
 Brueckner-HF with effects of 3-body forces

 How to determine Skyrme energy functionals from BHF equation of state
 Applications to ground states of closed shell nuclei and Sn isotopes
 Giant resonances in 208Pb
 Summary

1. Motivations

- The Skyrme-type Energy Density Functionals (EDF) are very successful for describing many nuclear phenomena.
- The 8 parameters are generally adjusted directly on (mostly empirical) properties of nuclear matter.
- It is desirable to build EDF on the basis of microscopic calculations of nuclear matter.
- An earlier attempt (Cao, Lombardo, Shen, NVG, Phys. Rev. C 73, 014313 (2006)) has proposed the LNS parametrization based on Brueckner-HF (BHF) calculations.
- Can one improve this result?

Brueckner-HF with 3-body forces (1)

Brueckner-Bethe-Goldstone (BBG) equation:

$$G(\omega) = \upsilon_{\rm NN} + \upsilon_{\rm NN} \sum_{k_1 k_2} \frac{|k_1 k_2\rangle Q_{k_1, k_2} \langle k_1 k_2|}{\omega - \epsilon_{k_1} - \epsilon_{k_2}} G(\omega)$$

$$\epsilon_k = k^2/2m + U_k \qquad U_k = \sum_{k'} \langle k, k' | G(arepsilon_k + arepsilon_{k'}) | k, k'
angle_A heta(k_F - k')$$

$$\upsilon_{\rm NN} = V_2^{\rm bare} + V_3^{\rm eff}$$

V_2(bare): Bonn B potential

14 November, 2011

Brueckner-HF with 3-body forces (2)

effective two-body force obtained from the three-body force W_3

$$\begin{aligned} \langle \vec{r}_1 \vec{r}_2 | V_3^{\text{eff}} | \vec{r}_1' \vec{r}_2' \rangle &= \frac{1}{4} \text{Tr} \sum_n \int d\vec{r}_3 d\vec{r}_3' \phi_n^* (\vec{r}_3') \psi(r_{13}') \psi(r_{23}') \\ &\times W_3(\vec{r}_1' \vec{r}_2' \vec{r}_3' | \vec{r}_1 \vec{r}_2 \vec{r}_3) \phi_n(r_3) \psi(r_{13}) \psi(r_{23}). \end{aligned}$$

 $\psi(r) = 1 - \eta(r)$: correlated two body wave function $\eta(r) \, : \, \text{the defect function}$

$$\eta_{12}=\langleec{r}|rac{Q}{H_0-\epsilon_{k_1}-\epsilon_{k_2}}G|k_1,k_2
angle$$

Z.H. Li, U. Lombardo, and H.J. Schulze and W. Zuo, Phys. Rev. C 77, 034316 (2008).

14 November, 2011

Brueckner-HF with 3-body forces (3)

Three body force diagrams included in the BHF calculations. On the left: $N\overline{N}$ virtual excitations. On the right: $\Delta(1232)$ and $N^*(1440)$ (Roper) resonances.

> Same meson exchange parameters as in Bonn B P. Grangé et al., Phys. Rev. C 40, 1040 (1989)

14 November, 2011

How to determine Skyrme energy functionals from BHF equation of state

BHF results of E/A are reasonably well reproduced in general by Skyrme parametrizations, at least up to saturation density

Fitting only E/A leads to large indetermination

Energy per particle of symmetric nuclear matter calculated in BHF and with various Skyrme forces.

U(T,S) components of potential energy in symmetric nuclear matter

$$U_{00}^{(Skyrme)}(\rho) = \frac{3}{160} \left(\frac{3\pi^2}{2}\right)^{\frac{2}{3}} t_2 (1-x_2) \rho^{\frac{5}{3}}, \qquad (A2)$$

$$U_{11}^{(Skyrme)}(\rho) = \frac{27}{160} \left(\frac{3\pi^2}{2}\right)^{\frac{2}{3}} t_2 (1+x_2) \rho^{\frac{5}{3}}, \qquad (A3)$$

$$U_{10}^{(Skyrme)}\rho) = \frac{3}{16}t_0(1-x_0)\rho\frac{9}{160}(\frac{3\pi^2}{2})^{\frac{2}{3}}t_1(1-x_1)\rho^{\frac{5}{3}} + \frac{3\pi^2}{160}t_0(1-x_0)\rho^{\frac{5}{3}} + \frac{3\pi$$

$$+\frac{1}{32}t_3(1-x_3)\rho^{\sigma+1},\tag{A4}$$

$$U_{01}^{(Skyrme)}(\rho) = \frac{3}{16}t_0(1+x_0)\rho + \frac{9}{160}(\frac{3\pi^2}{2})^{\frac{2}{3}}t_1(1+x_1)\rho^{\frac{5}{3}},$$

$$+\frac{1}{32}t_3(1+x_3)\rho^{\sigma+1}.$$
 (A5)

14 November, 2011

contradictory results in separate spin-isospin channels

(S,T) components of potential energy

14 November, 2011

LNS parametrization (Cao, Lombardo, Shen, NVG, Phys. Rev. C 73, 014313 (2006))

TABLE I: The Skyrme parameter set and the corresponding bulk properties of infinite nuclear matter.

	LNS
$t_0(MeVfm^3)$	-2484.97
$t_1(MeVfm^5)$	266.735
$t_2(MeVfm^5)$	-337.135
$t_3(MeVfm^{3+3\sigma})$	14588.2
x_0	0.06277
x_1	0.65845
x_2	-0.95382
x_3	-0.03413
σ	0.16667
$W_0(MeVfm^5)$	96.00
$ ho_0(fm^{-3})$	0.1746
E/A(MeV)	-15.32
$K_{\infty}(MeV)$	210.85
$\frac{m^*}{m}(isoscalar)$	0.825
$\frac{m^*}{m}(isovector)$	0.727
$a_s(MeV)$	33.4

14 November, 2011

Finite Nuclei with LNS

> Density profiles

Energies and Radii

FIG. 7: Neutron and proton densities in $^{208}{\rm Pb},$ calculated with LNS and SLy4 parametrizations.

Strategy for parameter fitting

$$\chi^2 = \sum_{i=1}^{N_p} \Big(rac{U_{TS}^{(BHF)}(i) - U_{TS}^{(Skyrme)}(i,t,x)}{\delta_U(i)} \Big)^2 + \sum_{i=1}^N \Big(rac{E^{(Exp)}(i) - E^{(SHF)}(i,t,x)}{\delta_E(i)} \Big)^2 +$$

$$\sum_{i=1}^{N} \Big(rac{r_c^{(Exp)}(i) - r_c^{(SHF)}(i,t,x)}{\delta_r(i)}\Big)^2 + (P(t,x)|_{
ho=
ho_0})/\delta_P)^2$$

Np: 10 values for each (S,T) N: 8 magic nuclei Impose P=0 at saturation point

$\rm fm^{-3}$	$\rho \leq 0.10$	$0.10 \le \rho \le 0.25$	$0.25 \le \rho \le 0.32$
δ_U	10%	5%	1%

$$\delta_E = 0.5 \,\, {
m MeV} \,\, ({
m LNS5})$$

 $\delta_E = 0.1 \,\, {
m MeV} \,\, ({
m LNS1})$

14 November, 2011

Minimization of

Nuclear matter results of the 2 new parametrizations

14 November, 2011

Closed-shell nuclei with new parametrizations

	Exp	LNS5	LNS1
¹⁶ O	-127.62	-137.27	-131.52
	2.73	2.758	2.745
^{40}Ca	-342.05	-354.55	-348.00
	3.49	3.551	3.521
^{48}Ca	-415.99	-427.13	-421.03
	3.48	3.485	3.500
⁵⁶ Ni	-483.99	-484.97	-482.41
	3.75	3.768	3.751
⁷⁸ Ni	-642.40	-653.81	-645.24
		3.961	3.973
100 Sn	-825.78	-823.69	-825.81
		4.446	4.457
132 Sn	-1102.90	-1108.23	-1104.9
		4.694	4.700
208 Pb	-1636.44	-1625.41	-1633.41
	5.50	5.531	5.531

14 November, 2011

Nuclei not included in the fit: the Sn chain

14 November, 2011

A further test: giant resonances

We calculate as a check, using RPA, some collective excitations in 208Pb

Isoscalar: 0+, 2+ Isovector: 1-, Gamow-Teller (1+)

Mode	Operator F
Isoscalar monopole	$\sum_{i=1}^A r_i^2$
isovector dipole	$\left rac{Z}{A} \sum_{n=1}^{N} r_n Y_{10}(\hat{r}_n) - rac{N}{A} \sum_{p=1}^{Z} r_p Y_{10}(\hat{r}_p) ight $
Isoscalar quadrupole	$\sum_i r_i^2 Y_{2M}(\hat{r}_i)$
Gamow-Teller	$\sum_i ec{\sigma}_i au_i^{(-)}$
Sum rules	$\mathbf{m}_k = \sum_{lpha} E^k_{lpha} \langle \widetilde{o} F lpha angle ^2$

14 November, 2011

Mode	Energy	Energy range
Isoscalar monopole	$E_1 = (m_1/m_{-1})^{1/2}$	complete range
isovector dipole	$E_0=m_1/m_0$	(10 - 17.5) MeV
Isoscalar quadrupole	$E_0=m_1/m_0$	(10 - 17.5) MeV
Gamow-Teller	$E_0=m_1/m_0$	

14 November, 2011

	LNS5	LNS1
$t_0~({ m MeV~fm^3})$	-2194.776	-2215.322
$t_1 \; ({ m MeV} \; { m fm}^5)$	482.518	532.536
$t_2 \; ({ m MeV} \; { m fm}^4)$	138.137	67.761
$t_3 \;({ m MeV}\;{ m fm}^{3(1+\sigma)})$	10784.169	10931.718
x_0	0.134	0.463
x_1	-0.097	0.128
x_2	-1.399	-2.174
x_3	0.171	0.615
$W_0 ~({ m MeV}~{ m fm}^5)$	105.674	116.789
$ ho_0~({ m fm}^{-3})$	0.1599	0.1604
E/A (MeV)	-15.57	-15.86
K_{∞} (MeV)	240.06	241.42
a_s (MeV)	29.21	29.63
$\frac{m*}{m}$	0.603	0.615
χ^2 per point	1.76	0.38

The 2 new Skyrme parameter sets LNS1 and LNS5

- BHF with 3-body effects can describe correctly the EOS - Skyrme functionals can only reproduce approximately BHF results in nuclear matter - One has to impose additional constraints on finite nuclei - It is then possible to determine parameter sets (LNS1,LNS5) which give satisfactory results in nuclear matter and in nuclei - The analytical form of Skyrme parametrization puts constraints on results