

Solar neutrino spectroscopy and oscillation with Borexino

LPNHE November 17, 2011 – Paris

The Solar neutrino physics
 The physics of Borexino

- ✓ The detector
- ✓ The "radio-purity" challenge
- ✓ The reached goals (⁷Be, ⁸B, pep and geo-v, day/ night, ...)
- \checkmark Future goals in the Solar sector
- ✓ Sterile neutrinos, superluminal (?)

Neutrino Production In The Sun

CNO cycle: $^{13}N,\,^{15}O,\,and\,^{17}F\,\nu$

The Standard Solar Model before/after 2004

The Standard Solar Model, based on the old metallicity derived by Grevesse and Sauval (Space Sci. Rev. **85**, 161 (1998)), was in **agreement within 0.5 in %** with the solar sound speed measured by helioseismology.

Latest work by Asplund, Grevesse and Sauval (Nucl. Phys. A **777**, 1 (2006)) indicates a **lower** metallicity **by a factor ~2**. This result destroys the agreement with helioseismology

What about neutrinos?

[cm ⁻² s ⁻¹]	рр (10 ¹⁰)	pep (10 ¹⁰)	hep (10 ³)	⁷ Be (10 ⁹)	⁸ B (10 ⁶)	¹³ N (10 ⁸)	¹⁵ O (10 ⁸)	¹⁷ F (10 ⁶)
GS 98	5.97	1.41	7.91	5.08	5.88	2.82	2.09	5.65
AGS 09	6.03	1.44	8.18	4.64	4.85	2.07	1.47	3.48
Δ	-1%	-2%	-3%	-9%	-18%	-27%	-30%	-38%

Solar neutrino measurements can solve the problem!

Borexino physics goals

- ✓ First ever observations of sub-MeV neutrinos in real time
- ✓ Balance between photon **luminosity** and neutrino luminosity of the Sun
- X CNO neutrinos (direct indication of metallicity in the Sun's core)
- ✓ **pep** neutrinos (indirect constraint on *pp* neutrino flux)
- ✓ Low energy (3-5 MeV) ⁸B neutrinos
- X Tail end of *pp* neutrino spectrum
- ✓ Test of the matter-vacuum oscillation transition with ⁷Be, *pep*,⁸B
- ✓ Day/night effect
- ✓ Limit on the **neutrino magnetic moment**
- ✓ SNEWS network for **supernovae**
- \checkmark Evidence (>3 σ) of geoneutrinos
- X Sterile neutrinos
- X Superluminal neutrinos

✓ doneX in progress

Borexino Collaboration

Detection principles and v signature

- Borexino detects solar v via their elastic scattering off electrons in a volume of highly purified liquid scintillator
 - ✓ Mono-energetic **0.862 MeV** ⁷**Be** v are the main target, and the only considered so far
 - Mono-energetic pep v , CNO v and possibly pp v will be studied in the future
- ✓ Detection via scintillation light:
 - ✓ Very low energy threshold
 - ✓ Good position reconstruction
 - ✓ Good energy resolution

BUT...

- No direction measurement
- The v induced events can't be distinguished from other β events due to natural radioactivity

Extreme radiopurity of the scintillator is a must!

Borexino Background

Expected solar neutrino rate in 100 tons of scintillator ~ 50 counts/day (~ 5 10⁻⁹ Bq/kg)

Just for comparison:

Natural water	~ 10 Bq/kg in 238 U, 232 Th and 40 K
Air	~ 10 Bq/m ³ in ³⁹ Ar, ⁸⁵ Kr and ²²² Rn
Typical rock	~ 100-1000 Bq/kg in 238 U, 232 Th and 40 K

BX scintillator must be **9/10 order of magnitude less** radioactive than anything on earth!

Borexino Background

Expected solar neutrino rate in 100 tons of scintillator ~ 50 counts/day (~ 5 10⁻⁹ Bq/kg)

Just for comparison:

Natural water	~ 10 Bq/kg in 238 U, 232 Th and 40 K
Air	~ 10 Bq/m ³ in ³⁹ Ar, ⁸⁵ Kr and ²²² Rn
Typical rock	~ 100-1000 Bq/kg in 238 U, 232 Th and 40 K

BX scintillator must be **9/10 order of magnitude less** radioactive than anything on earth!

• Low background nylon vessel fabricated in hermetically sealed low radon clean room (~1 yr)

• **Rapid transport** of scintillator solvent (PC) from production plant to underground lab to avoid cosmogenic production of radioactivity (⁷Be)

- Underground **purification plant** to distill scintillator components.
- Gas stripping of scintlllator with special nitrogen free of radioactive ⁸⁵Kr and ³⁹Ar from air

• All materials **electropolished SS or teflon**, precision cleaned with a dedicated cleaning module

Detector layout and main features

PMTs: PC & Water proof

Nylon vessel installation

Davide Franco – APC-CNRS

Counting Test Facility

- ✓CTF is a small scale prototype of Borexino:
- \checkmark ~ 4 tons of scintillator
- ✓ 100 PMTs
- ✓ Buffer of water
- ✓ Muon veto
- ✓ Vessel radius: 1 m

CTF demonstrates the Borexino feasibility

Borexino background

Radiolsotope		Concentration or Flux		Strategy for Re		
Name	Source	Typical	Required	Hardware	Software	Achieved
μ	cosmic	~200 s ⁻¹ m ⁻²	~ 10 ⁻¹⁰	Underground	Cherenkov signal	<10 ⁻¹⁰
		at sea level		Cherenkov detector	PS analysis	(overall)
Ext. γ	rock			Water Tank shielding	Fiducial Volume	negligible
lnt.γ	PMTs, SSS			Material Selection	Fiducial Volume	negligible
	Water, Vessels			Clean constr. and handling		
¹⁴ C	Intrinsic PC/PPO	~ 10 ⁻¹²	~ 10 ⁻¹⁸	Old Oil, check in CTF	Threshold cut	~ 10 ⁻¹⁸
²³⁸ U	Dust	∼ 10 ⁻⁵ -10 ⁻⁶ g/g	< 10 ⁻¹⁶ g/g	Distillation, Water Extraction		~ 2 10 ⁻¹⁷
²³² Th	Organometallic (?)	(dust)	(in scintillator)	Filtration, cleanliness		~ 7 10 ⁻¹⁸
⁷ Be	Cosmogenic (¹² C)	~ 3 10 ⁻² Bq/t	< 10⁻ੰ Bq/ton	Fast procurement, distillation	Not yet measurable	?
⁴⁰ K	Dust,	~ 2 10⁻ ⁶ g/g	< 10 ⁻¹⁴ g/g scin.	Water Extraction	Not yet measurable	?
	PPO	(dust)	< 10 ⁻¹¹ g/g PPO	Distillation		
²¹⁰ Pb	Surface contam.			Cleanliness, distillation	Not yet measurable	?
	from ²²² Rn decay				(NOT in eq. with ²¹⁰ Po)	
²¹⁰ Po	Surface contam.			Cleanliness, distillation	Spectral analysis	~ 14
	from ²²² Rn decay				α/β stat. subtraction	~ 0.01 c/d/t
²²² Rn	air, emanation from	~ 10 Bq/l (air)	< 1 c/d/100 t	Water and PC N ₂ stripping,	Delayed coincidence	< 0.02 c/d/t
	materials, vessels	~100 Bq/l (water)	(scintillator)	cleanliness, material selection		
³⁹ Ar	Air (nitrogen)	~17 mBq/m³ (air)	< 1 c/d/100 t	Select vendor, leak tightness	Not yet measurable	?
⁸⁵ Kr	Air (nitrogen)	∼ 1 Bq/m³ in air	< 1 c/d/100 t	Select vendor, leak tightness	Spectral fit	= 25±3
				(learn how to measure it)	fast coincidence	= 29±14

Expected Spectrum

The starting point: no cut spectrum

Davide Franco – APC-CNRS

Calibrations: Monte Carlo vs Data

Cosmic muons and induced neutrons

The α/β discrimination and the ²¹⁰Po puzzle

Different response in the scintillation emission time depending on the particle nature

After the selection cuts

Final fit: 740 days of statistics

⁷Be-v result

Source	[%]
Trigger efficiency and stability	< 0.1
Live time	0.04
Scintillator density	0.05
Sacrifice of cuts	0.1
Position reconstruction	$^{+1.3}_{-0.5}$
Energy scale	2.7
Fit consistency	1.7
Fit methods	1.0
Total Systematic Error	$+3.6 \\ -3.4$

⁷Be-v result

Source	[%]
Trigger efficiency and stability	< 0.1
Live time	0.04
Scintillator density	0.05
Sacrifice of cuts	0.1
Position reconstruction	$^{+1.3}_{-0.5}$
Energy scale	2.7
Fit consistency	1.7
Fit methods	1.0
Total Systematic Error	$^{+3.6}_{-3.4}$

R: 46.0±1.5_{stat}^{+1.6}-1.5 syst cpd/100 t $f_{Be} = 0.97 \pm 0.05$ $P_{ee} = 0.52^{+0.07}$ -0.06

Under the luminosity constraint: $\Phi pp = (6.06^{+0.02}_{-0.06}) \times 10^{10} \text{ cm}^{-2} \text{s}^{-1}$ CNO <1.7% (95% C.L.)

Davide Franco – APC-CNRS

 $tg^2\theta_{\,12}$

The Day-Night Asymmetry

Neutrino Magnetic Moment

Neutrino-electron scattering is the most sensitive test for μ_{ν} search

$$\left(\frac{d\sigma}{dT}\right)_W = \frac{2G_F^2 m_e}{\pi} \left[g_L^2 + g_R^2 \left(1 - \frac{T}{E_\nu}\right)^2 - g_L g_R \frac{m_e T}{E_\nu^2}\right]$$

EM current affects cross section: spectral shape sensitive to μ_v sensitivity enhanced at low energies (c.s.~ 1/T)

$$\left(\frac{d\sigma}{dT}\right)_{EM} = \mu_{\nu}^2 \frac{\pi \alpha_{em}^2}{m_e^2} \left(\frac{1}{T} - \frac{1}{E_{\nu}}\right)$$

A fit is performed to the energy spectrum including contributions from ¹⁴C, leaving μ_v as free parameter of the fit

Estimate	Method	10 ⁻¹¹ μ _Β
SuperK	⁸ B	<11
Montanino et al.	⁷ Be	<8.4
GEMMA	Reactor	<5.8
Borexino	⁷ Be	<5.4

⁸B neutrinos with the lowest threshold: 3 MeV

Background in the 3-16.3 MeV range

✓ Cosmic Muons

✓ External background

 ✓ High energy gamma's from neutron captures

✓ ²⁰⁸TI and ²¹⁴Bi from radon emanation from nylon vessel

✓ Cosmogenic isotopes

✓ ²¹⁴Bi and ²⁰⁸TI from ²³⁸U and ²³²Th bulk contamination

Count-rate: 1500 c/d/100 ton

Summary of the Cuts and Systematic

Cut	Counts >3 MeV	Counts > 5 MeV
None	1932181	1824858
Muon cut	6552	2679
FV cut	1329	970
Cosmogenic cut	131	55
¹⁰ C removal	128	55
²¹⁴ Bi removal	119	55
²⁰⁸ TI and ¹¹ Be sub.	75 <u>+</u> 13	46 <u>+</u> 8
Measured ⁸ B-v	75 <u>+</u> 13	46 <u>+</u> 8
BPS09(GS98) ⁸ B-v	86 <u>+</u> 10	43 <u>+</u> 6
BPS09(AGS05) ⁸ B-v	73 <u>+</u> 7	36 <u>+</u> 4

*MSW-LMA: Δm²=7.69×10⁻⁵ eV², tan²θ=0.45

✓ Systematic errors:

✓ 3.8% from the determination of the fiducial mass

✓ 3.5% (5.5%) uncertainty in the ⁸B rate above 3.0 MeV (5.0 MeV) from the determination of the light yield (1%)

The ⁸B v spectrum

Borexino data (⁷Be and ⁸B) confirm neutrino oscillation at 4.2 σ,
No discrimination between log and high metallicity SSM's

Geo-neutrinos

Geo-neutrinos: results

Null hypothesis rejected at 4.2σ

pep neutrinos: the ¹¹C background

¹¹C rejection: the three-fold coincidence technique

Coincidence among the muon father, the neutron capture and the ¹¹C decay

- problem 1: ¹¹C meanlife ~ 30 min
- problem 2: ~5% of 11C production without neutron emission

E_{μ} [GeV]	100	190	285	320	350			
			Rate					
Process		$[10^{-4}/\mu/m]$						
${}^{12}C(p,p+n){}^{11}C$	1.8	3.2	4.9	5.5	5.6			
$^{12}C(p,d)^{11}C$	0.2	0.4	0.5	0.6	0.6			
$^{12}C(\gamma,n)^{11}C$	19.3	26.3	33.3	35.6	37.4			
$^{12}C(n,2n)^{11}C$	2.6	4.7	7.0	8.0	8.2			
$^{12}C(\pi^+,\pi+N)^{11}C$	1.0	1.8	2.8	3.2	3.3			
$^{12}C(\pi^-,\pi^-+n)^{11}C$	1.3	2.3	3.6	4.1	4.2			
${}^{12}C(e,e+n){}^{11}C$	0.2	0.3	0.4	0.4	0.4			
${}^{12}C(\mu,\mu+n){}^{11}C$	2.0	2.3	2.4	2.4	2.4			
Invisible channels	0.9	1.6	2.4	2.7	2.8			
Total	28.3	41.3	54.8	59.9	62.2			
1σ systematic	1.9	3.1	4.4	5.0	5.2			
Measured	22.9	36.0						
1σ experimental	1.8	2.3						
Extrapolated			47.8	51.8	55.1			

pep neutrinos after the TFC

¹¹C rejection: a new PSD

Pulse Shape Discrimination (**PSD**) for **e**⁺/ **e**⁻ may meet a general interest in the neutrino community

However scintillators have almost equal response to e⁺/e⁻ in the energy region of interest (<10 MeV)

standard PSD can not be applied!!

No way (**up to now!!**) to disentangle electron (positron) induced signal and positron (electron) background in scintillator

Exploiting positronium formation...

In matter positrons may either directly annihilate or form a positronium state

Positronium has two ground states:

para-positronium (p-Ps) mean life in vacuum of ~ 120 ps singlet - 2 gamma decay

ortho-positronium (o-Ps) mean life in vacuum of ~ 140 ns triplet - 3 gamma decay

In matter o-Ps has a shorter mean life, mainly because of:

spin-flip: conversion to p-Ps due to a magnetic field

pick off: annihilation on collision with an anti-parallel spin electron

Note!! the 3 body decay channel is negligible in matter

Even a **short delay (few ns)** in energy depositions **between positron** (via ionization) **and** annihilation **gammas** (via Compton scattering) can provide a **signature for tagging (a subset of) positrons**

o-Ps in scintillators

D. Franco, G. Consolati, D. Trezzi, Phys. Rev. C83 (2011) 015504

The o-Ps technique in Borexino

PS-BDT distributions for test samples

Pulse shape parameter distribution in 0.9 - 1.8 MeV

pep neutrinos: results

The Borexino Solar neutrino spectroscopy

Next future: sterile neutrinos?

A neutrino/anti-neutrino source in Borexino

The physics

- Neutrino magnetic moment
- Neutrino-electron non standard interactions
- v_e e weak couplings at 1 MeV scale
- Sterile neutrinos at 1 eV scale
- Neutrino vs anti-neutrino oscillations on 10 m scale

The location

- A: underneath D = 825 cm No change to present configuration
- B: inside D = 700 cm Need to remove shielding water
- C: center Major change Remove inner vessels

The Icarus pit

The source candidates

Sources in the Icarus Pit

Source	<e> [MeV]</e>	R _{FV} [m]	Interaction channel	$L_{osc}[m]$ $\Delta m^2=0.1$ eV^2	$L_{osc}[m]$ $\Delta m^2=1.5$ eV^2	N _{ev} /MCi	N _{background}
51Cr	0.71	3.3	ES	17.5	1.2	~1426 200 days	~9700 200 days
37Ar	0.81	3.3	ES	20	1.3	~1875 200 days	~7520 200 days
90Sr-90Y	0.86	3.3	ES	21	1.4	~31419 1year	~14100 1year
90Y	2.0	4.25	IBD	49	3.3	~17596 1year	~12 1 year
106Rh	2.5	4.25	IBD	61.8	4.1	~156689 1year	~12 1 year

An example: 5 MCi ⁵¹Cr in the Icarus Pit

Conclusion

- Borexino opened the study of the solar neutrinos in real time below the barrier of natural radioactivity (5 MeV)
 - ✓ Three measurements reported for ⁷Be neutrinos
 - Best limits for *pp* and CNO neutrinos, combining information from SNO and radiochemical experiments
 - ✓ First real time measurement of *pep*
 - ✓ First observation of ⁸B neutrino spectrum below 5 MeV
- ✓ First observation of geoneutrinos
- Best limit on neutrino magnetic moment
- ✓ Potential in sterile neutrinos
- ✓ Superluminal neutrinos

Conclusion

- Borexino opened the study of the solar neutrinos in real time below the barrier of natural radioactivity (5 MeV)
 - ✓ Three measurements reported for ⁷Be neutrinos
 - Best limits for *pp* and CNO neutrinos, combining information from SNO and radiochemical experiments
 - ✓ First real time measurement of *pep*
 - ✓ First observation of ⁸B neutrino spectrum below 5 MeV
- ✓ First observation of geoneutrinos
- ✓ Best limit on neutrino magnetic moment
- ✓ Potential in sterile neutrinos
- ✓ Superluminal neutrinos

 ...and do not forget the technological success of the high radio-purity scintillator!