

Scattering and annihilation electromagnetic processes IPN Orsay - October $3^{\text {rd }}-5^{\text {th }}, 2011$

Agenda

Form Factors: definitions, formulae

Proton clatia and Asynnpiopia

A clispersive sursa rule for asyrspigotic beraziviors

ISR technigue and thresholal behaviors in $p \bar{p}$ and neutral channels

Forns Factors: clefincilions, fiornsulale aras ofirser factis

Baryon Form Factors definition

- Electromagnetic current $\left(q=p^{\prime}-p\right)$

$$
j^{\mu}=\left\langle N\left(p^{\prime}\right)\right| J^{\mu}(0)|N(p)\rangle=e \bar{u}\left(p^{\prime}\right)\left[\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 M} F_{2}\left(q^{2}\right)\right] u(p)
$$

- Dirac and Pauli form factors F_{1} and F_{2} are real
- In the Breit frame

$$
\left\{\begin{array} { l }
{ p = (E , - \vec { q } / 2) } \\
{ p ^ { \prime } = (E , \vec { q } / 2) } \\
{ q = (0 , \vec { q }) }
\end{array} \quad \left\{\begin{array}{l}
\rho_{q}=j^{0}=e\left[F_{1}+\frac{q^{2}}{4 M^{2}} F_{2}\right] \\
\vec{j}_{q}=e \bar{u}\left(p^{\prime}\right) \vec{\gamma} u(p)\left[F_{1}+F_{2}\right]
\end{array}\right.\right.
$$

Total charge conservation in the limit $\overrightarrow{p^{\prime}} \rightarrow \vec{p}: \quad\langle\boldsymbol{N}(\boldsymbol{p})| J^{\mu}(\mathbf{0})|\boldsymbol{N}(p)\rangle=e F_{1}(\mathbf{0})$
Let $\vec{B}=\vec{\nabla} \times \vec{A}$, in the limit $\overrightarrow{p^{\prime}} \rightarrow \vec{p}: \quad\langle N| \int d^{3} x \vec{S} \cdot \vec{A}|N\rangle=\frac{e}{M}\left[F_{1}(0)+F_{2}(0)\right] \vec{S} \cdot \vec{B}$

Sachs form factors

$$
\begin{aligned}
& G_{E}=F_{1}+\frac{q^{2}}{4 M^{2}} F_{2} \\
& G_{M}=F_{1}+F_{2}
\end{aligned}
$$

Normalizations

$$
\begin{array}{ll}
F_{1}(0)=Q_{N} & G_{E}(0)=Q_{N} \\
F_{2}(0)=\kappa_{N} & G_{M}(0)=\mu_{N}
\end{array}
$$

pQCD asymptotic behavior

- pQCD: as $q^{2} \rightarrow-\infty, F_{1}\left(q^{2}\right)$ and $F_{2}\left(q^{2}\right)$ must follow counting rules
- Quarks exchange gluons to distribute momentum

Dirac form factor F_{1}

- Non-spin flip
- Two gluon propagators
- $F_{1}\left(q^{2}\right) \underset{q^{2} \rightarrow-\infty}{\sim}\left(-q^{2}\right)^{-2}$

Pauli form factor F_{2}

- Spin flip
- Two gluon propagators
- $F_{2}\left(q^{2}\right) \underset{q^{2} \rightarrow-\infty}{\sim}\left(-q^{2}\right)^{-3}$

Sachs form factors G_{E} and G_{M}

- $G_{E, M}\left(q^{2}\right) \underset{q^{2} \rightarrow-\infty}{\sim}\left(-q^{2}\right)^{-2}$
- Ratio: $\frac{G_{E}}{G_{M}} \underset{q^{2} \rightarrow-\infty}{\sim}$ constant

Time-like nucleon form factors

- Crossing symmetry:

$$
\left\langle N\left(p^{\prime}\right)\right| J^{\mu}|N(p)\rangle \rightarrow\left\langle\bar{N}\left(p^{\prime}\right) N(p)\right| J^{\mu}|0\rangle
$$

- Form factors are complex functions of q^{2}

Cutkosky rule for nucleons

$\operatorname{Im}\left\langle\bar{N}\left(p^{\prime}\right) N(p)\right| J^{\mu}(0)|0\rangle \sim \sum_{n}\left\langle\bar{N}\left(p^{\prime}\right) N(p)\right| J^{\mu}(0) \quad J^{\mu}(0)|0\rangle \Rightarrow\left\{\begin{array}{l}\operatorname{lm} F_{1,2} \neq 0 \\ \text { for } q^{2}>4 m_{\pi}^{2}\end{array}\right.$ are on-shell intermediate states: $2 \pi, 3 \pi, 4 \pi, \ldots$

Time-like asymptotic behavior

Phragmèn Lindelöf theorem:
If a function $f(z) \rightarrow a$ as $z \rightarrow \infty$ along a straight line, and $f(z) \rightarrow b$ as $z \rightarrow \infty$ along another straight line, and $f(z)$ is regular and bounded in the angle between, then $a=b$ and $f(z) \rightarrow a$ uniformly in this angle.

$\underbrace{\lim _{q^{2} \rightarrow-\infty} G_{E, M}\left(q^{2}\right)}_{\text {space-like }}=\underbrace{\lim _{q^{2} \rightarrow+\infty} G_{E, M}\left(q^{2}\right)}_{\text {time-like }}$

- $G_{E, M} \underset{q^{2} \rightarrow+\infty}{\sim}\left(q^{2}\right)^{-2}$
real

Cross sections and analyticity

q^{2}-complex plane

Elastic scattering

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2} E_{e}^{\prime} \cos ^{2} \frac{\theta}{2}}{4 E_{e}^{3} \sin ^{4} \frac{\theta}{2}}\left[G_{E}^{2}-\tau\left(1+2(1-\tau) \tan ^{2} \frac{\theta}{2}\right) G_{M}^{2}\right] \frac{1}{1-\tau}
$$

$$
\tau=\frac{q^{2}}{4 M_{N}^{2}}
$$

Annihilation

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2} \beta C}{4 q^{2}}\left[\left(1+\cos ^{2} \theta\right)\left|G_{M}\right|^{2}+\frac{1}{\tau} \sin ^{2} \theta\left|G_{E}\right|^{2}\right]
$$

$$
\begin{aligned}
& \beta=\sqrt{1-\frac{1}{\tau}} \\
& \mathcal{C}=\text { coulomb factor }
\end{aligned}
$$

S and D waves

$$
\begin{cases}P_{\gamma}=-1 & P_{N \bar{N}}=(-1)^{L} \times(-1) \Rightarrow L=0,2 \\ J_{\gamma}=1 & (S, L)=(0,1) \text { forbidden } \Rightarrow S=1\end{cases}
$$

$$
G_{E}=G_{S}-2 G_{D} \quad G_{M}=\frac{G_{S}+G_{D}}{\sqrt{q^{2}} / 2 M}
$$

At threshold \boldsymbol{S} wave only $\Leftrightarrow \boldsymbol{G}_{\boldsymbol{E}}=\boldsymbol{G}_{\mathbf{M}}$

$$
\left\{\begin{array} { l }
{ G _ { S } = \frac { 2 G _ { M } \sqrt { q ^ { 2 } } / 2 M + G _ { E } } { 3 } } \\
{ G _ { D } = \frac { \mathcal { G } _ { M } \sqrt { q ^ { 2 } } / 2 M - G _ { E } } { 3 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
G_{S}=G_{M, E} \\
G_{D}=0
\end{array}\right.\right.
$$

Time-like magnetic proton form factor

Data obtained assuming $\left|G_{M}^{p}\right|=\left|G_{E}^{p}\right| \equiv\left|G_{\text {eff }}^{p}\right|$ (true only at threshold)

$$
\left|G_{\mathrm{eff}}^{p}\right|^{2}=\frac{\sigma_{p \bar{p}}\left(q^{2}\right)}{\frac{16 \pi \alpha^{2} \mathcal{C}}{3} \frac{\sqrt{1-1 / \tau}}{4 q^{2}}\left(1+\frac{1}{2 \tau}\right)}
$$

Data on $\boldsymbol{R}=\mu_{p} \boldsymbol{G}_{E}^{p} / \boldsymbol{G}_{M}^{p}$

Space-like region

- Old Rosenbluth data in agreement with space-like scaling $G_{E}^{p} \simeq G_{M}^{p} / \mu_{p}$
- Data from polarization techniques show unexplained increasing behavior
- Only polarization data have been used in the dispersive analysis

Time-like region

- Only two sets of data from BABAR and LEAR obtained studying angular distributions
- Unique attempts to perform a time-like $\left|G_{E}^{p}\right|-\left|G_{M}^{p}\right|$ separation
- Only BaBAR data have been used in the dispersive analysis

Asymptotic behavior

$$
\begin{gathered}
\text { pQCD } \\
G_{e f f}^{p}\left(q^{2}\right) \underset{q^{2} \rightarrow \infty}{\sim} G_{M}^{p}\left(q^{2}\right)
\end{gathered}
$$

- Phragmèn Lindelöf

$$
\lim _{q^{2} \rightarrow \infty} \frac{G_{\mathrm{eff}}^{p}\left(q^{2}\right)}{G_{M}^{p}\left(-q^{2}\right)}=1
$$

Negative limits for G_{E}^{p} ?

$$
\lim _{\left|q^{2}\right| \rightarrow \infty} G_{E}^{p}\left(q^{2}\right)=0^{-}
$$

$$
\left|G_{\mathrm{eff}}^{p}\left(q^{2}\right)\right|^{2}=\frac{\sigma_{p \bar{p}}\left(q^{2}\right)}{\frac{4 \pi \alpha^{2} \beta C}{3 s}}\left(1+\frac{1}{2 \tau}\right)^{-1}
$$

- Usually what is extracted from the cross section $\sigma\left(e^{+} e^{-} \rightarrow p \bar{p}\right)$ is the effective time-like form factor $\left|G_{\text {eff }}^{p}\right|$ obtained assuming
i.e. $|\boldsymbol{R}|=\mu_{p}$

Using our parametrization for R and the BABAR data on $\sigma\left(e^{+} e^{-} \rightarrow p \bar{p}\right)$, $\left|G_{E}^{p}\right|$ and $\left|G_{M}^{p}\right|$ may be disentangled

$\left|G_{E}^{p}\left(q^{2}\right)\right|$ and $\left|G_{M}^{p}\left(q^{2}\right)\right|$ from $\sigma_{p p}$ and DR

$$
\left|G_{M}^{p}\left(q^{2}\right)\right|^{2}=\frac{\sigma_{p \bar{p}}\left(q^{2}\right)}{\frac{4 \pi \alpha^{2} \beta C}{3 s}}\left(1+\frac{\left|R\left(q^{2}\right)\right|}{2 \mu_{p} \tau}\right)^{-1}
$$

- Usually what is extracted from the cross section $\sigma\left(e^{+} e^{-} \rightarrow p \bar{p}\right)$ is the effective time-like form factor $\left|G_{\text {eff }}^{p}\right|$ obtained assuming i.e. $|R|=\mu_{p}$
- Using our parametrization for R and the BABAR data on $\sigma\left(e^{+} e^{-} \rightarrow p \bar{p}\right)$, $\left|G_{E}^{p}\right|$ and $\left|G_{M}^{P}\right|$ may be disentangled

Asymptopia and dispersion relations

Assuming $G\left(q^{2}\right) \neq 0$ and using the Cauchy theorem, we have the new DR

New function

$$
\phi(z)=\frac{f(z) \ln G(z)}{z \sqrt{s_{\mathrm{th}}-z}} \int_{0}^{s_{\mathrm{phy}}}(z) d z \ll 1 \quad \oint_{C} \phi(z) d z=0
$$

Convergence relation to find the asymptotic power-law behavior of G_{M}^{p}

$$
\underbrace{-\int_{-\infty}^{0} \frac{\operatorname{Im}[f(t)] \ln G(t)}{t \sqrt{s_{\mathrm{th}}-t}} d t}_{\text {Space-like data }+(-t)^{-n}}=\int_{s_{\mathrm{th}}}^{\infty} \frac{f(s) \ln |G(s)|}{s \sqrt{s-s_{\mathrm{th}}}} d s \approx \underbrace{\int_{s_{\mathrm{phy}}}^{\infty} \frac{\boldsymbol{f}(\boldsymbol{s}) \ln |\boldsymbol{\operatorname { l n }}(s)|}{\boldsymbol{s} \sqrt{\boldsymbol{s}-s_{\mathrm{th}}}} d s}_{\text {Time-like data }+s^{-n}}
$$

\boldsymbol{n} is the only free parameter

$$
G_{M}^{p}\left(q^{2}\right) \underset{\left|q^{2}\right| \rightarrow \infty}{\propto}\left|q^{2}\right|^{-(2.27 \pm 0.36)}
$$

ISR: Physics Motivations

Existing ISR results, obtained by BABAR, show interesting and unexpected behaviors, mainly at thresholds, for

$$
\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow p \bar{p} \quad \text { and } \quad \boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{\Lambda} \bar{\Lambda}, \boldsymbol{\Sigma}^{0} \overline{\Sigma^{0}}, \boldsymbol{\Lambda} \overline{\Sigma^{0}}
$$

There are physical limits in reaching the threshold of many of these channels via energy scan (stable hadrons produced at rest can not be detected)

The Initial State Radiation technique provides a unique tool to access threshold regions working at higher resonances

Initial State Radiation

$\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \gamma_{\mathrm{IS}} X_{\mathrm{had}}$

- $\frac{d^{2} \sigma}{d E_{\gamma} d \cos \theta_{\gamma}}=W\left(E_{\gamma}, \theta_{\gamma}\right) \sigma_{e^{+} e^{-} \rightarrow x_{\text {had }}}(s)$
$W\left(E_{\gamma}, \theta_{\gamma}\right)=\frac{\alpha}{\pi x}\left(\frac{2-2 x+x^{2}}{\sin ^{2} \theta_{\gamma}}-\frac{x^{2}}{2}\right)$
- $\boldsymbol{s}=\boldsymbol{q}^{2}, \boldsymbol{q} \ldots \ldots . \boldsymbol{X}_{\text {had }}$ momentum
- $E_{\gamma}, \boldsymbol{\theta}_{\gamma}$.. CM クs energy, scatt. ang.
- $\boldsymbol{E}_{\mathrm{CM}} \ldots \ldots . \ldots . . \mathrm{CM} \boldsymbol{e}^{+} \boldsymbol{e}^{-}$energy
- $x=2 E_{\gamma} / E_{\mathrm{CM}}$
- All energies $\left(q^{2}\right)$ at the same time \Rightarrow

Better control on systematics (greatly reduced point to point)

- Detected ISR at large angles \Rightarrow full $X_{\text {had }}$ angular coverage

CM boost $\Rightarrow\left\{\begin{array}{l}\text { at threshold } \epsilon \neq 0 \\ \text { energy resolution } \sim 1 \mathrm{MeV}\end{array}\right.$

SOSSISEA Fold resursjeferios j=cios sjejajects

The Coulomb Factor

Sommerfeld Enhancement and Resummation Factors

Coulomb Factor \mathcal{C} for S-wave only:
Partial wave FF: $\quad G_{S}=\frac{2 G_{M} \sqrt{q^{2} / 4 M^{2}}+G_{E}}{3} \quad G_{D}=\frac{G_{M} \sqrt{q^{2} / 4 M^{2}}-G_{E}}{3}$
Cross section: $\quad \sigma\left(q^{2}\right)=2 \pi \alpha^{2} \beta \frac{4 M^{2}}{\left(q^{2}\right)^{2}}\left[\mathcal{C}\left|G_{S}\left(q^{2}\right)\right|^{2}+2\left|G_{D}\left(q^{2}\right)\right|^{2}\right]$

$$
\mathcal{C}=\mathcal{E} \times \mathcal{R}
$$

© Enhancement factor: $\mathcal{E}=\pi \alpha / \beta$

- Step at threshold: $\quad \sigma_{p \bar{p}}\left(4 M_{p}^{2}\right)=\frac{\pi^{2} \alpha^{3}}{2 M_{p}^{2}} \frac{\not Z^{2}}{}\left|G_{S}^{p}\left(4 M_{p}^{2}\right)\right|^{2}$
- Resummation factor:

$$
\mathcal{R}=1 /[1-\exp (-\pi \alpha / \beta)]
$$

(1. Few MeV above threshold: $\quad \mathcal{C} \simeq 1 \Rightarrow \sigma_{p \bar{p}}\left(q^{2}\right) \propto \beta\left|G_{S}^{p}\left(q^{2}\right)\right|^{2}$

BABAR: $\mathbf{e}^{+} \boldsymbol{e}^{-} \rightarrow p \bar{p}$

At the threshold

$$
\begin{aligned}
& \sigma_{p \bar{p}}\left(4 M_{p}^{2}\right)=\frac{\pi^{2} \alpha^{3}}{2 M_{p}^{2}} \frac{\beta_{p}}{\beta_{p}}\left|G_{S}^{p}\left(4 M_{p}^{2}\right)\right|^{2} \\
& \sigma_{p \bar{p}}\left(4 M_{p}^{2}\right)=0.85\left|G_{S}^{p}\left(4 M_{p}^{2}\right)\right|^{2} \mathrm{nb}
\end{aligned}
$$

$$
\left|G_{S}^{p}\left(4 M_{p}^{2}\right)\right| \equiv 1
$$

as pointlike fermion pairs!

BABAR: $\left|\mathcal{G}_{E}^{p}\right| /\left|\boldsymbol{G}_{M}^{p}\right|$ and $\sigma\left(\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow p \bar{p}\right)$

BABAR: $\mathcal{G}_{\text {eff }}^{p}$ with and without Sommerfeld factor

$$
\left|G_{\mathrm{eff}}^{p}\right|^{2}=\frac{\sigma_{p \bar{p}}\left(q^{2}\right)}{C \frac{16 \pi \alpha^{2}}{3} \frac{\sqrt{1-1 / \tau}}{4 q^{2}}\left(1+\frac{1}{2 \tau}\right)} \quad\left|G_{\mathrm{ho}-\mathrm{sum}}^{p}\right|^{2}=\frac{\sigma_{p \bar{p}}\left(q^{2}\right)}{\varepsilon \frac{16 \pi \alpha^{2}}{3} \frac{\sqrt{1-1 / \tau}}{4 q^{2}}\left(1+\frac{1}{2 \tau}\right)}
$$

$e^{+} e^{-} \rightarrow \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-}$and $e^{+} e^{-} \rightarrow p \bar{N}(1440)+c . c$.

[Belle PRL101, 172001]

The nebitrals pobzete

Neutral Baryons puzzle (BABAR)

$$
\sigma\left(e^{+} e^{-} \rightarrow N^{0} \bar{N}^{0}\right)=\frac{4 \pi \alpha^{2} \beta C_{0}}{3 q^{2}}\left[\left|G_{M}^{N^{0}}\right|^{2}+\frac{2 M_{N^{0}}^{2}}{q^{2}}\left|G_{E}^{N^{0}}\right|^{2}\right]_{\sqrt{q^{2} \rightarrow 2 M_{N^{0}}}}^{\longrightarrow} \frac{\pi \alpha^{2} \beta}{2 M_{N^{0}}^{2}}\left|G^{N^{0}}\right|^{2} \rightarrow 0
$$

No Coulomb correction at hadron level: $\mathcal{C}_{0}=1$

Threshold values obey U-spin relation: $G^{\Sigma^{0}}-G^{\wedge}+\frac{2}{\sqrt{3}} G^{\wedge \Sigma^{0}}=0$

Time-like $\left|G_{M}^{n}\right|$ measurements

In this energy range only BESIII can repeat this measurement

$e^{+} e^{-} \rightarrow n \bar{n}$

Preliminary result from SND at VEPP-2000

- Scan 2011
- Maximum energy: 2 GeV
- Efficiency ~30\%
- Above $\boldsymbol{n} \bar{n}$ threshold:

$$
\sigma_{n \bar{n}}=0.8 \pm 0.2 \mathrm{nb}
$$

Highlights

D Asymptotic behavior not well undersiood

O Pointike behavior not only at thresholal
(ho sorsirsierielal resulusirsaition faction

O Neutiral balryons purazle

D More data from EESIII, VEPP-2000 and PANDA.

Additional slicles

ISR and final state radiation

$$
\begin{aligned}
\frac{d^{2} \sigma_{\mathrm{ISR}}}{d E_{\gamma} d \theta_{\gamma}} & =\frac{\alpha^{3} E_{\gamma}}{3 E_{\mathrm{CM}}^{2} s}\left(\left|G_{M}^{p}(s)\right|^{2}+\frac{\left|G_{E}^{p}(s)\right|^{2}}{2 \tau}\right) \mathcal{W}\left(E_{\gamma}, \theta_{\gamma}\right) \\
\frac{d^{2} \sigma_{\mathrm{FSR}}}{d E_{\gamma} d \theta_{\gamma}} & =\frac{\alpha^{3} E_{\gamma}}{3 E_{\mathrm{CM}}^{4}} \mathcal{F}\left[E_{\gamma}, \theta_{\gamma}, G_{E}^{p}\left(E_{\mathrm{CM}}^{2}\right), G_{M}^{p}\left(E_{\mathrm{CM}}^{2}\right)\right]
\end{aligned}
$$

No ISR-FSR interference after $d \Phi(p \bar{p})$ integration

$$
R_{\mathrm{ISR} / \mathrm{FSR}}=\frac{d \sigma_{\mathrm{ISR}} / d E_{\gamma}}{d \sigma_{\mathrm{ISR}} / d E_{\gamma}+d \sigma_{\mathrm{FSR}} / d E_{\gamma}}\left[20^{\circ} \leq \theta_{\gamma} \leq 160^{\circ}\right]
$$

For large values of x or at small angle θ_{γ} of photon emission the final state radiation is strongly suppressed

The $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \tau \bar{\tau}$ case

BABAR: integrated Sommerfeld factor

$$
\overline{\mathcal{R}^{-1}}=\frac{1}{\Delta q} \int_{0}^{\Delta q}\left[1-e^{-\frac{\pi \alpha}{\beta}}\right] d \sqrt{q^{2}} \quad \Delta q=\sqrt{q^{2}}-2 M_{p}
$$

