

CMB et Détection Directionnelle de Matière Sombre

Daniel Santos Laboratoire de Physique Subatomique et de Cosmologie (LPSC-Grenoble)(UJF Grenoble 1 -CNRS/IN2P3-INPG)

LPNHE – Paris, 10 Novembre 2011

« Thermal History » of our Universe...

WMAP 7 ans (E. Komatsu et al. 2010) :

- Energie noire : $\Omega_{\Lambda} = 0,734 \pm 0,029$
- Matière non baryonique $\Omega_{CDM} = 0,222 \pm 0,026$
- Matière baryonique $\Omega_B = 0,0449 \pm 0,0028$

$$\Omega_{\rm tot} = \Omega_{\rm r} + \Omega_{\Lambda} + \Omega_{\rm M}$$

- densité de matière $\Omega_{M} = \Omega_{B} + \Omega_{NB}$
- déterminée par CMB SNIa « clusters » de galaxies

Planck mission

1m50 ø telescope \rightarrow up to 5' resolution

2 instruments :

Low Frequency Instrument 30 to 70 GHz @ 18 K

High Frequency Instrument 100 to 857 GHz @ 0.1 K

ESA mission : first European satellite dedicated to CMB study launched: May 14th 2009 HFI PI : J.-L. Puget (France) LFI PI : R. Mandolesi (Italy)

LPNHE – Paris- 10 Nov. 2011

The cryogenic system

High Frequency Instrument

The focal plane

The HFI plate (100 to 857 GHz)	is
surrounded by	
LFI horns (30 to 70 GHz)	

	\sim	\bigcirc		Estima	ated Inst	trument	Perform	ance Go	als
Instrument	LFI			HFI					
Center Freq. (GHz)	30	44	70	100	143	217	353	545	857
Detector Technology	HEM	T LNA :	arrays		Bolometer arrays				
Detector Temperature	~20 K			perature ~20 K 0.1 K					
Cooling Requirements	H ₂ s	orption c	ooler	H ₂ sorption + 4 K J-T stage + Dilution				cooler	
Number of Unpol.	0	0	0	0	4	4	4	4	4
Detectors									
Number of Linearly	4	6	12	8	8	8	8	0	0
Polarised Detectors									
Angular Resolution	33	24	14	9.5	7.1	5	5	5	5
(FWHM, arcmin)									
Bandwidth (GHz)	6	8.8	14	33	47	72	116	180	283
Average $\Delta T/T_{I}^{*}$ per	2.0	2.7	4.7	2.5	2.2	4.8	14.7	147	6700
pixel [#] In 10 ⁻⁶									
Average $\Delta T/T_{UO}$ per	2.8	3.9	6.7	4.0	4.2	9.8	29.8		
pixel [#] In 10 ⁻⁶									
							(T DOO	a 11\	

LPNHE – Paris- 10 Nov. 2011

The scanning strategy

From the L2 Lagrange point 30 to 50 times the same circle, then shift of a third of the smallest beam → full sky survey in 7 months

LPNHE – Paris- 10 Nov. 2011

HFI Core Team: HFI Data Processing

Figure 4. Raw TOIs for three bolometers, the '143-5' (top), '545-2' (middle), and 'Dark1' (bottom) illustrating the typical behaviour of a detector at 143 GHz, 545 GHz, and a blind detector over the course of three rotations of the spacecraft at 1 rpm. At 143 GHz, one clearly sees the CMB dipole with a 60 s period. The 143 and 545 GHz bolometers show vividly the two Galactic Plane crossings, also with 60 s periodicity. The dark bolometer exhibits a nearly constant baseline together with a population of glitches from cosmic rays similar to those seen in the two upper panels.

HFI Core Team: HFI Data Processing

Figure 19. Processed TOI for the same bolometers and time range as shown in Fig. 4. Red samples are considered valid. Times where data are flagged, are indicated by the purple ticks at the bottom of each plot.

Planck Early Release Compact Source Catalogue Galactic sources

LPNHE – Paris- 10 Nov. 2011

143 GHz

353 GHz

545 GHz

857 GHz

LPNHE – Paris- 10 Nov. 2011

Effet SZ thermique avec Planck

189 détections robustes des amas, dont 30 nouvelles...

Coma: Planck (couleurs) XMM (contours)

D. Santos (LPSC Grenoble)

Polarisation linéaire : (Q,U) Stokes par.

Mesurer le potentiel gravitationnel intégré :

FIG 2.12.—Same as Figure 2.11, but now comparing the concordance Λ CDM model, having $n_{\rm S} = 0.95$ and zero run (solid line), with a realisation of a model having with $n_{\rm S} = 0.95$ (at a fiducial wavenumber of $k_0 = 0.05$ Mpc⁻¹) and a run of $dn_{\rm S}/d \ln k = -0.03$.

$$\begin{split} &(Q \pm iU)(\hat{\mathbf{n}}) = \sum_{\ell,m} a_{\pm 2,\ell m} \cdot {}_{\pm 2} Y_{\ell m}(\hat{\mathbf{n}}) \\ &E(\hat{\mathbf{n}}) = -\sum_{\ell,m} \frac{1}{2} [a_{2,\ell m} + a_{-2,\ell m}] Y_{\ell m}(\hat{\mathbf{n}}) , \quad B(\hat{\mathbf{n}}) = \sum_{\ell,m} \frac{i}{2} [a_{2,\ell m} - a_{-2,\ell m}] Y_{\ell m}(\hat{\mathbf{n}}) \end{split}$$

D. Santos (LPSC Grenoble)

D. Santos (LPSC Grenoble)

Prédiction des contraintes sur les paramètres cosmologiques

Méthodologie: Exploration de l'espace des paramètres par MCMC

Choix du modèle cosmologique sous-jacent :

 $(\Omega_{b}h^{2}, \Omega_{m}h^{2}, \Omega_{\Lambda}, A_{s}, n_{s}, \tau, Y_{He}, \Sigma m_{v}, w, \alpha, N_{eff}) = (0.022, 0.134, 0.73, 0.8, 0.98, 0.12, 0.24, 0.1, -1, 0, 3.04)$ Modèle minimal paramètre potentiellement détectable paramètres test des dégénérescences

Contraindre la masse des neutrinos avec PLANCK

Non-baryonic Dark Matter

- DM hot (relativistic) : neutrinos $\Omega_v h2 < 0.0067 (95\% CL)$ (WMAP+2dFGRS)
- DM cold (not relativistic) : WIMPs, $M\chi \sim O(GeV)$

For WIMPs:
$$\Omega_{\chi}h^{2} = \frac{O(10^{-9} \text{ GeV}^{-2})}{<\sigma_{A}v >}$$

avec Mχ = O(100 GeV)

⇒ Ωχh2 = O(0.1)

LPNHE – Paris- 10 Nov. 2011

À l'échelle des amas

(1E0657-558) Z= 0.296

La matière non-baryonique est 6 fois plus importante que la baryonique

MIMAC

MIcro-tpc MAtrix of Chambers A Large TPC for directional non baryonic Dark Matter detection

3rd International Workshop on Directional Detection of Dark Matter June 7th-10th, 2011 Aussois (FRANCE)

MIMAC

LPSC (Grenoble): F. Mayet , J. Lamblin (starting 10/2011), D. Santos J. Billard (Ph.D), C. Grignon (post-doc:10/08-10/10)
<u>Technical Coordination</u>: O. Guillaudin
<u>Electronics</u>: G. Bosson, J-L. Bouly, O.Bourrion, J-P. Richer, J-P. Scordilis
<u>Gas detector</u>: O. Guillaudin, A. Pellisier, M. Marton
<u>Data Acquisition</u>: O. Bourrion
<u>Mechanical Structure</u>: Ch. Fourel, S. Roudier, J-C. Malacour, D. Fombaron, S. Roni
<u>Ion source</u>: P. Sortais, T. Lamy, J. Angot

CEA-Saclay (IRFU): I. Giomataris, E. Ferrer, F.J. Iguaz, J-P. Mols

IRSN (Cadarache): L. Lebreton, C. Golabek (leaving 10/2011)(CCPM (Marseille): J. Busto , Ch. Tao (Tsinghua Univ.)) (starting 06/2011)

Fundings: ANR-Blanc (10/2007 – 10/2010) (IRSN contract (11/2010 – 11/2015)

Direct detection

Direct detection : scalar vs axial

WIMP-quark interaction :

Scalar Interaction :

 $\sigma_{SI}(^{A}X) \propto \sigma_{SI}(p) \times A^{4}$ Heavy nuclei : Ge, Xe, ...

Axial Interaction : (spin coupling)

 $\sigma_{SD}(^{A}X) \propto \sigma_{SD}(p) \times A^{2}$

Odd nuclei : ¹H, ³He, ¹⁹F, Or... (⁷³Ge, ¹²⁹Xe)

Complementary searches...

Axial cross section and event rate in MIMAC-³He (10kg)

LPNHE – Paris- 10 Nov. 2011

Complementarity with scalar detection

D. Santos (LPSC Grenoble)

Directionalité et SUSY

→ Squarks légers exclus au LHC (>1 TeV/c²)

→ de nombreux modèles accessibles (MSSM, NMSSM)

Collaboration : D. Albornoz Vasquez & G. Bélanger (LAPTH) (publication en cours)

MIMAC

Strategy :

- Matrix of micro-TPC
- Directional detection (energy and 3D track)
- > Multi-targets (1H,³He, ¹⁹F) $\rightarrow \sigma(A)$
- Axial interaction
- ➢ ³He, CH₄, C₄H₁₀, CF₄

Tested !

3D Detection principle

Directional Detection

10⁸ Events with $E_R = [5,50]$ keV

D. Santos (LPSC Grenoble)

Quenching factor measurement

Low energy ion source
1 to 50 keV
Developped @LPSC

Detection of ⁴He (recoils) of 1.5 keV !! (95% ⁴He + 5% iso) at 700mbars

IQF Measurement of ⁴He in 95% ⁴He + 5% $C_4 H_{10}$ as a function of the pressure

D. Santos et al. arXiv:astro-ph0810.1137

LPNHE – Paris- 10 Nov. 2011

5keV ¹⁹F Recoil in 60 mbar 40mbar CF4+16.8mbar CHF3+1.2 mbar Isobutane

New Ion Source for calibration (quenching) purposes (COMIMAC)

LPNHE – Paris- 10 Nov. 2011

Drift volume – charge collection

LPNHE – Paris- 10 Nov. 2011

The MIMAC-micromegas 100x100 (bulk)

LPNHE – Paris- 10 Nov. 2011

MIMAC 100x100 (v2)

LPNHE – Paris- 10 Nov. 2011

MIMAC electronics (v2.0) (512 channels)

LPNHE – Paris- 10 Nov. 2011

MIMAC prototype (v2.0) - 10x10x18 cm³

3D Track : 5.9 keV electron (⁵⁵Fe)

3D track measurement of an electron of 1.5 keV (X(AI))

3D Tracks: Drift velocity

Magboltz Simulation

• New mixed gas MIMAC target : $CF_4 + x\% CHF_3$ (x=30)

LPNHE – Paris- 10 Nov. 2011

MIMAC : recoil track measurements

April 2009 @ IRSN Cadarache and May 16th, 2011 !!

<u>Amande facility</u> :

•Neutron field with energies down to a few keV

LPNHE – Paris- 10 Nov. 2011

MIMAC prototype at Cadarache (detecting neutrons by nuclear recoil)

LPNHE – Paris- 10 Nov. 2011

MIMAC – (512 channels) 10x 10 x18 cm³

X-Y, X-Z and Y-Z projections, of a ¹H (60 keVee) 3D-recoil track produced by a neutron (565keV)(Amande-Cadarache). Flash-ADC (sampled every 20ns) giving its stoping power dE/dx

X-Y

Trace en 3D : ¹H en 50mbar : 35mbar CF_4 + 14 of CHF_3 + 1mbar of C_4H_{10} !!!

~57 keV (ionization), ~3 cm

Calibration from X rays: 3.05 keV (¹⁰⁹Cd) et 5.96 keV (⁵⁵Fe)

NIS (Normalized Integrated Straggling) degree of freedom

Normalized Integrated Straggling (NIS) (a new degree of freedom for e-recoil discrimination) (The adition of partial deflections along the measured track, normalized by its total energy)

LPNHE – Paris- 10 Nov. 2011

X-Y, X-Z and Y-Z projections, of a ¹⁹F (~40 keVee) 3D-recoil track in CF₄+CHF₃

X-Y, X-Z and Y-Z projections, of a ¹⁹F (~50 keVee) 3D-recoil track in CF₄+CHF₃

3D track : Alpha 5,5 MeV (²²²Rn)

Bi-chamber module (Modane) 2x (10x10x25 cm³) (March 2012 !)

LPNHE – Paris- 10 Nov. 2011

$MIMAC - 1m^3$

ture et renfort (Product1.4.1)

MIMAC : Dark Matter discovery/exclusion

J. Billard *et al.*, PLB 2010

Détection directionnelle :

→ Une découverte (>3 σ @90%CL) avec BDF est possible jusqu'à 10-3-10-4 pb

Détection directionnelle : identification

J. Billard et al., PRD 2011

Contrainte simultanée des 8 paramètres avec une seule expérience

Class	Parameter	WMAP Seven-year ML ^b	WMAP+BAO+H0 ML	WMAP Seven-year Mean ^c	WMAP+BAO+H0 Mean
Primary	$100\Omega_b h^2$	2.227	2.253	$2.249^{+0.056}_{-0.057}$	2.255 ± 0.054
	$\Omega_c h^2$	0.1116	0.1122	0.1120 ± 0.0056	0.1126 ± 0.0036
	Ω_{Λ}	0.729	0.728	$0.727^{+0.030}_{-0.029}$	0.725 ± 0.016
	n_s	0.966	0.967	0.967 ± 0.014	0.968 ± 0.012
	τ	0.085	0.085	0.088 ± 0.015	0.088 ± 0.014
	$\Delta_R^2(k_0)^d$	2.42×10^{-9}	2.42×10^{-9}	$(2.43\pm 0.11)\times 10^{-9}$	$(2.430\pm0.091)\times10^{-9}$
Derived	σ8	0.809	0.810	$0.811^{+0.030}_{-0.031}$	0.816 ± 0.024
	H_0	70.3 km s ⁻¹ Mpc ⁻¹	70.4 km s ⁻¹ Mpc ⁻¹	$70.4 \pm 2.5 \text{ km s}^{-1} \text{ Mpc}^{-1}$	$70.2 \pm 1.4 \text{ km s}^{-1} \text{ Mpc}^{-1}$
	Ω_b	0.0451	0.0455	0.0455 ± 0.0028	0.0458 ± 0.0016
	Ω_c	0.226	0.226	0.228 ± 0.027	0.229 ± 0.015
	$\Omega_m h^2$	0.1338	0.1347	0.1345+0.0056	0.1352 ± 0.0036
	Zreion ^e	10.4	10.3	10.6 ± 1.2	10.6 ± 1.2
	t_0^{f}	13.79 Gyr	13.76 Gyr	13.77 ± 0.13 Gyr	$13.76 \pm 0.11 \text{ Gyr}$

Table 1 Summary of the Cosmological Parameters of ACDM Model^a

Notes.

^a The parameters listed here are derived using the RECFAST 1.5 and version 4.1 of the WMAP likelihood code. All the other parameters in the other tables are derived using the RECFAST 1.4.2 and version 4.0 of the WMAP likelihood code, unless stated otherwise. The difference is small. See Appendix A for comparison.

^b Larson et al. (2011). "ML" refers to the maximum likelihood parameters.

^c Larson et al. (2011). "Mean" refers to the mean of the posterior distribution of each parameter. The quoted errors show the 68% confidence levels (CLs).

^d $\Delta_{\mathcal{R}}^2(k) = k^3 P_{\mathcal{R}}(k)/(2\pi^2)$ and $k_0 = 0.002 \,\mathrm{Mpc}^{-1}$.

^e "Redshift of reionization," if the universe was reionized instantaneously from the neutral state to the fully ionized state at z_{reion}. Note that these values are somewhat different from those in Table 1 of Komatsu et al. (2009a), largely because of the changes in the treatment of reionization history in the Boltzmann code CAMB (Lewis 2008).

f The present-day age of the universe.