

Analysis of the charmless decay $B^0 \to \rho \pi$ in the LHCb experiment

Diego Alejandro Roa Romero

O. Deschamps, R. Lefèvre, P. Perret

Laboratoire de Physique Corpusculaire - Université Blaise Pascal

December 2011

Contents

- ① CKM matrix and α with $B^0 \to \rho \pi$ decays
- 2 Experimental context
- 3 Selection of $B^0 \to \rho \pi$ decays

Quarks in the Standard Model

 In the Standard Model, we find six quarks coming in three generations:

- These are the mass eigenstates composing the hadrons (valence quarks), except for the top quark which weakly decays before hadronizing
- As the weak interaction eigenstates are different from the mass eigenstates, the W bosons couple quarks of different generations

CKM matrix

• The transformation from the mass eigenstates basis (q) to the weak interaction one (q') can be represented by a 3×3 unitary matrix, the Cabbibo-Kobayashi-Maskawa matrix:

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

The weak coupling between two mass eigenstates (ij) then depends on the matrix element V_{ij} of the CKM matrix.

Unitary Triangle

Unitarity implies that the matrix elements satisfy

$$\sum_{j} V_{ij} V_{jk}^* = \delta_{ik} \quad \forall \ i, k = 1, 2, 3$$

We are particularly interested in one of those relations

$$V_{cd}V_{cb}^* + V_{td}V_{tb}^* + V_{ud}V_{ub}^* = 0$$

The representation of this relation in the complex plane is a triangle. The angle α is related with CP violation in B mesons: no CP violation would mean a flat triangle, i.e. $\alpha=\pi$.

Constraints on the unitary triangle

Concerning α

• The combination of the measurements gives: $\alpha = (89.0 \pm \frac{4.4}{4.2})^{\circ}$

• The global fit, excluding α measurements, gives: $\alpha = (92.9 \pm \frac{3.6}{5.1})^{\circ}$

$b \rightarrow u$ transitions

• To measure α we have to use decays involving $b \rightarrow u$ transitions:

$$\alpha = arg\left(\frac{-V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right)$$

 In these processes the main contributions come from diagrams at tree level of weak origin and penguin diagrams involving QCD and weak factors:

Decay channels

- The channels involving $b \to u$ transitions are $B^0 \to \pi\pi$, $B^0 \to \rho\pi$ and $B^0 \to \rho\rho$ (branching ratios between $7 \cdot 10^{-7}$ and $2.4 \cdot 10^{-5}$)
- We focus on $B^0 \to \rho \pi \to \pi^+ \pi^- \pi^0$ which should lead to the best experimental sensitivity
- We will see in the following slides:
 - how the decay amplitudes can be written in terms of α ,
 - how the phase space can be expressed,
 - how the time evolution of a $|B^0>$ state can be written according to $B^0-\bar{B}^0$ mixing,
 - ullet and finally how to extract α .

Decay amplitude

- We can express the total amplitude of $B^0 \to \pi^+\pi^-\pi^0$ as the combination of the amplitudes of $B^0 \to \pi^{+-0}\rho^{-+0}$
- Factorizing the penguin and tree parts, the amplitudes can be expressed as

$$\mathbf{A}^j = V_{ub}^* V_{ud} \mathbf{T}^j - V_{tb}^* V_{td} \mathbf{P}^j$$

where "j" represents the decay to $\rho^+\pi^-$, $\rho^-\pi^+$ or $\rho^0\pi^0$

• In terms of α

$$e^{i\beta}\mathbf{A}^{j}=e^{-i\alpha}\mathbf{T}^{j}-\mathbf{P}^{j}$$

Isospin decomposition leads to

$$-\frac{1}{2}\left(\mathbf{P}^{+-}+\mathbf{P}^{-+}\right)=\mathbf{P}^{00}$$

$B^0 \rightarrow 3\pi$ amplitude

• The total amplitude ${\bf A}_{3\pi}$ of the $B^0 \to 3\pi$ decay is

$$\mathbf{A}_{3\pi} = \sum_{i} f^{j} \mathbf{A}^{j}$$

- ullet The factors f^j account both for pure form factors and the angular distributions associated to the spin of the ho vector meson
- \bullet This point is very important and determines the way α will be extracted

Parametrization of the phase space

- Initially, there are 12 degrees of freedom corresponding to the 4-momentums of the 3 pions
- 4-momentum conservation between the initial B meson and the decay products imposes 4 relations
- The nature of the decay products being known, their invariant masses give 3 more relations
- As the B meson is a scalar, the orientation of the decay plane is isotropic and any choice of the 3 Euler angles is equivalent
- The phase space can then be represented by only 2 parameters:

$$s^+ = m_{\pi^+\pi^0}^2, \ s^- = m_{\pi^-\pi^0}^2$$

and the factors f^j can be expressed as functions of s^+ and s^-

$B^0 - \bar{B}^0$ mixing

• We can describe the B^0 system by the flavour eigenstates $|B^0>=|\bar{b}d>$ and $|\bar{B}^0>=|b\bar{d}>$ that can be written as linear combinations of the mass eigenstates:

$$|B_L> = p|B^0> + q|\bar{B}^0> |B_H> = p|B^0> - q|\bar{B}^0>$$

with
$$|p|^2 + |q|^2 = 1$$

• The time evolution of a $|B^0>$ state, prepared as such at t=0, is given by (the formula for $\bar{B}^0(t)$ is similar)

$$|B^{0}(t)> = e^{-imt}e^{-\frac{\Gamma t}{2}} \times \left[\cos\left(\frac{\Delta mt}{2}\right)|B^{0}> + i\frac{p}{q}\sin\left(\frac{\Delta mt}{2}\right)|\bar{B}^{0}>\right]$$

with: $m = (M_H + M_L)/2$, $\Delta m = M_H - M_L$ and $\Gamma = (\Gamma_H + \Gamma_L)/2$ assuming: $\Delta \Gamma = \Delta \Gamma_H - \Gamma_L << \Gamma$ and Δm

Amplitude distribution

The decay amplitude distribution as a function of phase space and proper time can be expressed as (here for an initial B^0)

$$\mathbf{M}(t,s^{+},s^{-}) = e^{-\Gamma t/2} cos(\frac{\Delta mt}{2}) \mathbf{A}_{3\pi}(s^{+},s^{-})$$

$$+ ie^{-\Gamma t/2} \frac{q}{p} sin(\frac{\Delta mt}{2}) \bar{\mathbf{A}}_{3\pi}(s^{+},s^{-})$$

- The distribution as a function of (s⁺; s⁻) is called a Dalitz plot
- The strategy to extract α is to fit the time dependent Dalitz plot obtained on flavour tagged (initial B^0 or initial \bar{B}^0) decays

Example of time dependent Dalitz plots

Example of Dalitz plots for an initial B^0 and various ranges of proper time:

The Large Hadron Collider

- pp collisions
- $\sqrt{s} = 7 \text{ TeV}$
- 1.1 fb⁻¹ recorded in LHCb in 2011

The LHCb Experiment

LHCb is a single arm spectrometer covering the region between $1.9 < \eta < 4.9$

 $b\bar{b}$ mostly produced close to the beam pipe

Trigger

A very efficient trigger is required: even if the bb cross section is high at the LHC ($\sigma_{b\bar{b}}\sim 300~\mu b$ at $\sqrt{s}=7$ TeV), the rate of background events is much higher ($\sigma_{inel}\sim 60$ mb); in addition, the branching ratios of channels of interest are small ($Br(B^0\to 3\pi)=2.4\times 10^{-5}$).

- L0 uses custom electronics: fully synchronous (40 MHz), 4 μs fixed latency
 - High p_T candidates from calorimeters (hadron, e, γ) and from muon system (μ , di- μ); veto high occupancy events (Global Events Cuts)
- High Level Trigger (HLT) uses a farm of about 2000 CPUs
 - \bullet HLT1 \rightarrow fast tracking
 - HLT2 → full event reconstruction

Key elements

The following are key elements for the extraction of α fitting the time dependent Dalitz plot of flavour tagged $B^0 \to \rho \pi$ decays:

- π^0 reconstruction
- Kaon identification
- Propertime measurement
- Flavour tagging

π^0 reconstruction

- π^0 mostly decays in two photons (99% of the cases)
- ullet In LHCb, photons are reconstructed as calorimeter clusters made of 3 imes 3 calorimeter cells
- π^0 can be merged or resolved, i.e. whether or not the clusters of the 2 photons overlap

 $\gamma\gamma$ invariant mass for resolved π^0 (first 3 nb⁻¹) $\rightarrow \sigma = 7.25~{
m MeV/c^2}$

Kaon identification

- Kaon identification is essential to distinguish similar decays such as $B^0 \to K^-\pi^+\pi^0$ and $B^0 \to \pi^+\pi^-\pi^0$
- This identification is mainly made by RICH detectors
- Calibration samples:
 - K from $\phi \to K^+K^-$
 - π from $K_s \to \pi\pi$
- Plots for $dLL(K \pi) > 0$

$B^0 ightarrow ho\pi$ topology

We are looking for:

- Well reconstructed tracks: π^{\pm} with low track $\chi^2/ndof$
- Tracks not coming from the primary vertex: π^{\pm} with large IP significance
- Tracks coming from the B^0 decay vertex: end vertex with low χ^2
- B^0 coming from the primary vertex: low IP significance, low θ_{DIRA}

- Decay products from a B meson: relatively high p_T because of the high B mass
- Decay from a B meson: high flight distance, 3-body invariant mass in the B⁰ mass range

Event selection

- The total sample of LHCb is so BIG. It is divided in groups depending on each set of channels (stripping)
- The cut based selection is driven by the stripping selection we designed to select $B^0 \to hh\pi^0$ final states
- This stripping selection grants access to B_d^0 and B_s^0 decays to $\pi\pi\pi^0$, $K\pi\pi^0$ and $KK\pi^0$
- no Kaon identification cut applied to the tracks, large B mass window

We will now discuss briefly the stripping and trigger selections

Illustration of stripping cuts

Stripping selection for $B \to hh\pi^0$

 π^{\pm} cuts

	p > 5000 MeV/c
Track χ^2 probability $> 10^{-6}$	IP $\chi^2 > 25$

 π^0 cuts

$$p_T > 1500 \text{ MeV/c (Resolved)}, 2500 \text{ MeV/c (Merged)}$$

 $CL(\gamma^1)$ and $CL(\gamma^2) > 0.2$ (Resolved π^0 only)

B⁰ cuts

$$p_T > 2500~{
m MeV/c}$$
 (Resolved), 3000 MeV/c (Resolved)
End vertex χ^2 probability $> 10^{-3}$ IP $\chi^2 < 9$
 $\theta_{DIRA} < 10~{
m mrad}$ Flight distance $\chi^2 > 64$
 $4200 < m_{B^0} < 6400~{
m MeV/c}^2$

Trigger selection: L0 and HLT1

- L0 and HLT1 selections based on standard trigger lines
- \bullet L0: hadron, γ and electron lines are the most relevant ones
- HLT1
 - Hlt1Track: single detached high momentum track ($IP\chi^2$ cut \sim 36; p_T cut \sim 1.5 GeV/c)
 - Hlt1Track + Photon: looser momentum cuts on the single detached high momentum track in the case of a L0 photon trigger (p_T cut $\sim 0.8~{\rm GeV/c}$)
- To reduce the background, with a very limited loss on signal efficiency, we require that the $\pi^+\pi^-\pi^0$ combination selected offline is enough to fire the HLT1 trigger

Trigger selection: HLT2

- HLT2 selection relies on both a standard trigger line (Hlt2Topo2Body) and a dedicated line we designed to improve the trigger efficiency (Hlt2B2HHPi0)
- The purpose of the Hlt2Topo2Body line is to trigger on 3-body decays for which only two tracks have been reconstructed in the HLT2 (3rd particle = neutral or low momentum track)
- The Hlt2B2HHPi0 line implements in the HLT2 similar cuts to the ones we use for the $B^0 \to hh\pi^0$ stripping selection
- To reduce the background, with a very small cost on signal efficiency, we require that the $\pi^+\pi^-\pi^0$ combination selected offline is enough to fire at least one of these 2 HLT2 lines

HLT2 line dedicated to $B \rightarrow hh\pi^0$

 π^{\pm} cuts

$p_T > 500 \; \mathrm{MeV/c}$	$p > 5000 \mathrm{MeV/c}$	
Track $\chi^2/\mathrm{ndof} < 2.4$	IP $\chi^2 > 9$	
Distance of closest approach of the 2 tracks < 0.2 mm		

$$\pi^0$$
 cut: $p_T > 1500~{
m MeV/c}$ (Resolved), 2500 ${
m MeV/c}$ (Merged) B^0 cuts

$ ho_T > 2500~{ m MeV/c}$ (Resolved), 3000 $ m MeV/c$ (Merged)		
End vertex $\chi^2 < 10$	IP $\chi^2 < 25$	
$ heta_{ extsf{DIRA}} < 16 \; ext{mrad}$	Flight distance $\chi^2 > 100$	
$4200 < m_{B^0} < 6400 \; \mathrm{MeV/c^2}$		

Additional cuts for $B^0 o ho\pi$ study

- The two tracks are associated to pions: $dLL(K \pi) < 0$ for both tracks
- The B^0 decay go through the intermediate ρ resonance: $400 < m_{\pi\pi}^{min} < 1200 \ {\rm MeV/c^2}$ with $m_{\pi\pi}^{min}$ the minimum invariant mass among $m_{\pi^+\pi^0}$, $m_{\pi^-\pi^0}$ and $m_{\pi^+\pi^-}$
- \bullet 4300 $< m_{B^0} < 6300 \ {
 m MeV/c^2}$

Results for 2010 data ($\sim 35pb^{-1}$)

- In order to analyze the 2010 data, the stripped data was further purify using a Multivariate Analysis: Fisher, Neural Network and Boosted Decision Tree methods were tried
- Those expected significance should increase by at least a factor 5 over the 2011 data sample $(1.1fb^{-1})$ The $B^0 \to \pi^+\pi^-\pi^0$ should clearly be observable

 B^0 Mass using Resolved π^0

lπ⁰ ≣ ► ≣ ∽۹0

π^0 and γ Confidance Level

• The confidance level is defined for photons and π^0 . It is a tool to distinguish good neutral particles from background.

 It uses information from the SPD, Preshower and ECAL clusters and the possible matching between those clusters and tracks.

$D^0 \to K^- \pi^+ \pi^0$ control sample

- $Br(D^0 \to K^-\pi^+\pi^0) \sim 14\%$
- Similar stripping selection
- Good resolutions in D⁰ mass
 - \bullet Resolved π^0 : about 14 ${
 m MeV/c^2}$
 - ullet Merged π^0 : about 30 ${
 m MeV/c^2}$
- This sample is being used to study photon and pi0 identification with very high statistics

Conclusions

- The $B^0 \to \rho\pi$ decay should allow to precisely measure the angle α of the unitary triangle in LHCb
- The extraction of α will be done through a Dalitz time dependent analysis of flavoured tagged decays
- Trigger and stripping selections have been implemented
- We benefit from a nice $D^0 \to K^-\pi^+\pi^0$ control sample
- We have 1.1 fb^{-1} of recorded data waiting to be analyzed

THANK YOU

Propertime measurement

- The measurement of the propertime is of major importance for a lot of analyses in LHCb
- It has been used for instance to extract the $b\bar{b}$ cross section using $J/\psi \to \mu\mu$ events
 - Pseudo-propertime defined as:

$$t_z = \frac{(z_{J/\psi} - z_{PV}) \times M_{J/\psi}}{p_z^{J/\psi}}$$

-
$$\sigma_{bar{b}} =$$
 288 \pm 4 \pm 48 $\,\mu{
m b}$

• The propertime resolution is around 40 to 50 fs depending on the final state

Flavour tagging

Flavour tagging is the identification of the initial state (t = 0) of the B meson $(B \text{ or } \bar{B})$

- Opposite side tagging: identifies the flavour of the partner b-hadron ($b\bar{b}$ pair produced at t=0)
 - Lepton tagging: $b \rightarrow l^- X$ (warning: $b \rightarrow c X \rightarrow l^+ X'$)
 - Vertex charge tagging: $B^+ = \bar{b}u / B^- = b\bar{u}$
 - Kaon tagging: $b \rightarrow cX \rightarrow sX'$ $(K^+ = \bar{s}u \ / \ K^- = s\bar{u})$
- Same side tagging: fragmentation track close to the B meson
 - Kaon in the case of B_s^0 : K^+ for B_s^0 / K^- for \bar{B}_s^0
 - Pion in the case of $B_{(d)}^0$: π^+ for $B_{(d)}^0$ / π^- for $\overline{B}_{(d)}^0$

B^0 oscillation

- Tagging efficiency = ϵ_{tag}
- Dilution: $D=1-2\omega$ where ω is the wrong tagging probability
- Effective statistics after tagging: $N_{eff} = N_{total} \times \epsilon_{tag} D^2$
- First signal of flavour oscillation observed for $B^0 o D^{*-} \mu^+ \nu_\mu$
 - \bullet Data sample of 1.9 ${
 m pb}^{-1}$
 - "Out of the box" tagging algorithm: $\epsilon_{tag} D^2 \sim 2\%$ ("already" 60% of expected nominal performance)
 - $\Delta m_d = 3.8 \pm 0.5 \text{ MeV/c}^2$ (PDG: $3.34 \pm 0.03 \text{ MeV/c}^2$)

Computation of expected signal yield

• The number of signal events is given by:

$$S = 2 \times \sigma_{b\bar{b}} \times f(b \to B^0) \times Br(B^0 \to 3\pi) \times \epsilon_{tot} \times \int Ldt$$

• ϵ_{tot} accounts for all the efficiencies:

$$\epsilon_{tot} = \epsilon_{gen} \times \epsilon_{sel} \times \epsilon_{GEC} \times \epsilon_{trig}$$

Some numbers

$\sigma_{bar{b}} =$ 292 μ b	$f(b \to B^0) = 0.41$
$Br(B^0 \to 3\pi) = 2.4 \cdot 10^{-5}$	$\int Ldt = 33 \text{ p}b^{-1}$
$\epsilon_{\it gen}=15.8\%$ (acceptance)	$\epsilon_{GEC} = 60\%$

Global Event Cuts (GEC)

- High occupancy events are more difficult to reconstruct and take more time in the HLT
- They are vetoed using the numbers of SPD hits and the clusters in the trackers

Efficiencies

$$\epsilon_{gen} = \frac{\text{number of events generated in the acceptance}}{\text{number of events generated}}$$

$$\epsilon_{sel} = \frac{\text{number of events selected}}{\text{number of events generated in the acceptance}}$$

$$\epsilon_{trig} = \frac{\text{number of events selected passing the trigger}}{\text{number of events selected}}$$

	Efficiency	Merged	Resolved
Ī	$\epsilon_{\it sel}$	6.1×10^{-3}	5.2×10^{-3}
Ī	$\epsilon_{ extit{trig}}$	0.43	0.25

Background and signal expectations

- ullet To estimate the background contribution in the signal region (5000 $< m_{B^0} < 5600~{
 m MeV/c^2}$), the data are fitted by an exponential
- This leads to the following expectations

π^0 type	5	В	S/B	$S/\sqrt{S+B}$
Merged	47	901	0.05	1.51
Resolved	23	1015	0.02	0.73

• To improve those performances we use a multivariate analysis

Multivariate analysis

- Multivariate classifiers combine correlated input variables into a discriminant output
- We use TMVA (Toolkit for MultiVariate Analysis)
 which provides a ROOT-integrated environment
 and implements a variety of multivariate
 clasification algorithms through a common
 interface

- The results of two classifiers are reported here:
 - Fisher: projection of the data over the hyperplane of best separation
 - Multi-Layer-Perceptron (MLP): artificial neural network interconecting layers of artificial neurons through non-linear functions

Training method

- Signal sample: MC events passing the offline selection as well as the trigger requirements and in the mass window $5000 < m_{B^0} < 5600$
- Background sample: data events passing the offline selection as well as the trigger requirements and in the mass windows $4300 < m_{B^0} < 5000$ or $5600 < m_{B^0} < 6300$ MeV/c²
- To make sure there is no over training, each of those two samples is divided into a training sample (half of the statistics) and a test sample (other half of the statistics)

Variables used in TMVA

Small set of variables providing good discrimination between signal and background:

- max $[p_T(\pi^+), p_T(\pi^+)]$
- min $[p_T(\pi^+), p_T(\pi^+)]$
- $\sqrt{\mathrm{IP}\chi^2}$ of the π^\pm with max p_T
- $\sqrt{\mathrm{IP}\chi^2}$ of the π^\pm with min p_T
- $p_T(\pi^0)$
- min $[CL(\gamma^1), CL(\gamma^2)]$ (resolved π^0 only)

- $-\log_{10}[\text{End vertex }\chi^2 \text{ prob.}(B^0)]$
- $\sqrt{\mathrm{IP}\chi^2(\mathrm{B}^0)}$
- \bullet θ_{DIRA}
- $\sqrt{\text{Flight distance }\chi^2(B^0)}$
- min $[p_{\pi^+} \perp \vec{p}_{B^0}, p_{\pi^-} \perp \vec{p}_{B^0}, p_{\pi^0} \perp \vec{p}_{B^0}]$
- $cos[max(\theta_{\pi^+B^0},\ \theta_{\pi^-B^0},\ \theta_{\pi^0B^0})]$ in the B^0 rest frame

Some distributions

Choise of the cut on the discriminant

The criteria used was to select the cut that gives the best expected significance $(S/\sqrt{S+B})$

The best expected significances we obtained are

π^0 type	Fisher	MLP
Merged	3.0	2.6
Resolved	1.4	1.3

Merged π^0 results

MI_P results

•
$$S_{exp} = 35$$

•
$$B_{\rm exp} = 142 \pm 11$$

•
$$S_{fit} = 49.2 \pm 15.4$$

•
$$(S+B)_{obs} = 156$$

Fisher results

- $S_{exp} = 39$
- $B_{exp} = 108 \pm 11$
- $S_{fit} = 43.7 \pm 24.4$
- $(S+B)_{obs}=120$

Resolved π^0 results

MI P results

•
$$S_{exp} = 14$$

•
$$B_{exp} = 98 \pm 10$$

•
$$S_{fit} = 13.0 \pm 7.0$$

•
$$(S+B)_{obs}=61$$

Fisher results

- $S_{exp} = 14$
- $B_{exp} = 89 \pm 11$
- $S_{fit} = 15.0 \pm 8.0$
- $(S+B)_{obs}=82$

