

Mesure de la section efficace de production de paires de photons au LHC avec le détecteur ATLAS

SCHWOERER Maud

Encadrants: LEVEQUE Jessica WINGERTER Isabelle DELMASTRO Marco

Mesure de la section efficace di-photon au LHC

- Vérifier les prédictions théoriques (pQCD)
- Bruit de fond irréductible pour la recherche du boson de Higgs et de nouveaux phénomènes...

Luminosité intégrée 2011 = 150 * Luminosité intégrée 2010

Plan

• INTRODUCTION

-ATLAS

- Le calorimètre électromagnétique

- Les photons ...

...mais il faut des photons "propres"

• NETTOYAGE DES DONNEES

- Ce que l'on traque
- Le nettoyage dans ATLAS
- Les cellules bruyantes isolées

• L'ANALYSE

- Les processus de production
- Le bruit de fond
- Le principe de la mesure
- Définition du signal
- Estimation du bruit de fond

Le détecteur ATLAS

Le calorimètre à argon liquide: Signal d'ionisation

1) Expansion de la gerbe électromagnétique (EM) 2) Ionisation des atomes LAr \rightarrow déplacement des électrons/ions induit par la HV \rightarrow signal d'ionisation

Le calorimètre à argon liquide: Reconstruction de l'énergie

5) Reconstruction de l'énergie (pour chaque cellule)

$$E_{rec} = f \sum_{i}^{Nech} a_i (ADC_i - ped)$$

4) Besoin d'estimer la qualité du signal des 200000 cellules du calorimètre → définition du facteur de qualité ou Q facteur

$$Q = \sum_{i}^{N_{ech}} \left[ADC_i - g_i (E_{rec} / f) \right]^2$$

avec g_i la forme d' ionisation prédite

Bruit dans le calorimètre à argon liquide

• 4 couches pour reconstruire/identifier s les photons...

• ...ou du bruit.

I. Monitoring des cellules bruyantes.

Ce que l'on traque

Amas de cellules avec une énergie > 10 GeV

Nombre très élevé d'entrées dans un bin lié à un bruit anormal dans les cellules.

Nettoyage des données dans ATLAS

• Une contrainte principale (commune à tout ATLAS) : la calibration Loop :

- Exemples de défaut observes dans le calorimètre à Argon liquide:
 - Corruption des données.
 - Problèmes dans les lignes hautes tension (HV).
 - Bouffée de bruit.
 - Cellules bruyantes isolées: 200000 cellules à monitorer dans le calorimètre.

Monitoring des cellules bruyantes isolées dans les bunches vides

- LHC : \approx 1300 bunches qui se croisent toutes les 50 ns.
- Monitorer le bruit :

Cellules bruyantes isolées : Identification

Pic à 8 GeV et queue à plus haute énergie.

Bruit électronique pqr cellule attendu dans le presampler: entre 50 MeV et 120 MeV.

• Définir des coupures pour identifier ces cellules:

→Seuil en énergie (par rapport au bruit moyen attendu) et en fréquence (nombre de fois où la cellule est allumée).

• Créer un outil qui permet de tourner sur les 10% de données disponibles à la fin du run.

Cellules bruyantes isolées : Masking

- Liste des cellules bruyantes produite automatiquement après chaque run (...avant la fin de la calibration loop) et envoyée aux experts pour être masquées.
- Deux façons différentes de masquer une cellule:
 - cellule bruyante en permanence (High Noise)
 - \rightarrow masquer durant tout le run.
 - cellule sporadiquement bruyante (Sporadicaly Noisy)
 - \rightarrow masquer quand le Q factor est mauvais.

L'énergie de la cellules masquée est remplacée par la moyenne de ses voisines.

Cellules bruyantes isolées : Résultats

Amas de cellules avec une énergie > 10 GeV: Avant nettoyage

Après nettoyage

Nombre de cellules flaggées en fonction du numéro de run

→ Presampler :
 10% des cellules flaggées
 sporadiques par run.

Cellules bruyantes isolées : Une origine?

Energie moyenne [GeV] pour les "mauvaises" cellules du presampler

 Quelques « points chauds » principalement dans le Presampler C (η négatif) → Etude en cours pour établir une éventuelle relation avec les lignes haute tension (cf P. Czodrowski).

Nombre de cellules flaggées en fonction de la luminosité online

- Presampler C: dépendance claire du nombre de cellules flaggées avec la luminosité online.
- Autres couches: pas de tendance observée.

II. Mesure de la section efficace de production de paires de photon au LHC.

Production de paires de photons

• Principaux modes de production directe :

• Processus de fragmentation des partons:

Bruit de fond

• Le bruit de fond : mauvaise identification de jets comme des photons directs.

• Rapport des sections efficaces:

$$\frac{\sigma_{\gamma-jet}}{\sigma_{\gamma\gamma}} \approx 300$$

$$\frac{\sigma_{jet-jet}}{\sigma_{\gamma\gamma}} \approx 1000000$$

Identification des photons

Identification

→ Coupure sur les variables qui caractérisent le développement de la gerbe : au total 9 variables.

Isolation des photons

• Energie d'isolation

→ Coupure sur l' énergie EM corrigée (empilement...) contenue dans un cône de rayon
 0.4 autour du photon.

Tight + Iso → facteur de réjection \approx 10000 → efficacité sur signal \approx 85% (pour E_y > 40 GeV)

Definition du signal di-photon

• Pré-sélection:

- Di-photon trigger: deux photons tels que $E_v^T > 20$ GeV.

- Au moins deux candidats photons "loose" tels que :

 $E_{y1}^{T} > 25 \text{ GeV et } E_{y2}^{T} > 22 \text{ GeV}$.

• Sélection du signal:

- Identification des candidats di-photon : "Tight".
- Isolation des candidats di-photon : 5 GeV

 Pour éviter un superposition trop grande des cônes d'isolations des deux photons:

$$\Delta R_{\gamma\gamma} = \sqrt{\left(\eta_{1}^{\gamma} - \eta_{2}^{\gamma}\right)^{2} + \left(\phi_{1}^{\gamma} - \phi_{2}^{\gamma}\right)^{2}} > 0.4$$

Principe de la mesure

Section efficace différentielle :

dX

 $d\sigma$

avec X les variables cinématiques : $m_{\gamma\gamma}$, $pt_{\gamma\gamma}$, $\Delta \varphi_{\gamma\gamma}$, $cos \vartheta^*$

• Combien voit-on d'évenements?

$$\frac{d\sigma_{\gamma\gamma}}{dX} = \frac{N_{\gamma\gamma}}{A \times \varepsilon \times L \times \Delta X}$$

 $N_{\gamma\gamma}$: Nombre d'évenements diphoton observés dans le bin de la variable X et de largeur dX.

- A : Acceptance.
- *L* : Luminosité intégrée.
- ε : Efficacité de selection (trigger, reconstruction, identification, isolation).
- N_{yy} ?! \rightarrow Pour extraire le signal on a besoin d'estimer le bruit de fond.

Soustraction du bruit de fond: La méthode 2DSideBand étendue (1)

• Méthode :

Jeu sur coupure d'identification Tight (T) et d'isolation (I) \rightarrow l'échantillon de candidats photons présélectionnés est divisé en 16 regions plus ou moins enrichies en signal.

Soustraction du bruit de fond: La méthode 2DSideBand étendue (2)

• Dans les regions les plus enrichies en signal (N_{AA} , N_{AB} ...)

 \rightarrow extraire $N_{gg'}$, $N_{jg'}$, N_{gj} et N_{jj} :

$$N_{AA} = \varepsilon \varepsilon' N_{gg}^{\ L'L'} + \varepsilon f' N_{gj}^{\ L'L'} + f \varepsilon' N_{jg}^{\ L'L'} + f f' N_{jj}^{\ L'L'}$$

Avec:

$$N_{gg} = \varepsilon \varepsilon' N_{gg}^{L'L'}, N_{gj} = \varepsilon f' N_{gj}^{L'L'}, N_{jg} = f \varepsilon' N_{gg}^{L'L'}, N_{jj} = f f' N_{gg}^{L'L'}$$

- ε , ε' : Efficacité d'isolation et d'identification pour γ_1 , γ_2 (déterminé à partir du MC ... et bientôt des données).
- f, f': Fake rates pour l'isolation et identification (déterminés à partir des données).

Au total 8 categories: N_{AA} , N_{AB} , N_{AC} , N_{AD} , N_{BA} , N_{CA} , N_{DA} , N_{BB}

Signal dans la région N_{AA}

• Données : 2.1 fb⁻¹

25

Conclusion

Monitoring cellules bruyantes dans le calorimètre à Argon liquide

 Nécessité de monitorer les cellules bruyantes du calorimètre pour nettoyer les données.

- Création d' un outil qui permet l'identification et la caractérisation de ces cellules pour chaque run \rightarrow fonctionne et est utilisé quotidiennement depuis Mai 2011.

- Les cellules problématiques sont principalement situées dans le Presampler C

- Amélioration de l'algorithme pour se débarrasser de la dépendance en temps/luminosité.

Mesure de section efficace de paires de photons

• Résultat pour Moriond 2012

 \rightarrow mettre à jour l'analyse avec 5.1fb⁻¹:

- ⁻ Estimation de la contamination des électrons,
- Amélioration des systématiques,
- Comparaison avec la simulation....

Back-up

quark-gluon scattering gq $\rightarrow \gamma\gamma q$

Back-up

200

150

100

50

100

110

ATLAS

 $\sqrt{s} = 7 \text{ TeV}, \int \text{Ldt} = 1.08 \text{ fb}^{-1}$

120

130

- Data 2011

Statistical error

150

m_{gg} [GeV]

160

150

145

m_H [GeV]

gg gj **+** jg

DY

140

Total error

dN/dm_{gg} [GeV⁻¹]

Н→үү

- Latest ATLAS public results w/ 1.04 fb⁻¹
 - arxiv:1108.5064, submitted to Phys Lett. B
- Same SM diphoton analysis, but...
 - Higher E_T cut (25 GeV, 40 GeV)
 - Statistical treatment (categories) to increas sensitivity to signal

Back-up

Plus de formules pour la méthode 2D side band étendue

• Dans les regions les plus enrichies en signal $(N_{AA}, N_{AB}...) \rightarrow \text{extraire } N_{gg}, N_{jg}, N_{gj} \text{ et } N_{jj}$:

$$\begin{split} N_{AA} &= \varepsilon \varepsilon' N_{gg}^{TT} + \varepsilon f' N_{gj}^{TT} + f \varepsilon' N_{jg}^{TT} + f f' N_{jj}^{TT} \\ N_{AB} &= \varepsilon (1 - \varepsilon') N_{gg}^{TT} + \varepsilon (1 - f') N_{gj}^{TT} + f (1 - \varepsilon') N_{jg}^{TT} + f (1 - f') N_{jj}^{TT} \\ N_{BA} &= (1 - \varepsilon) \varepsilon' N_{gg}^{TT} + (1 - \varepsilon) f' N_{gj}^{TT} + (1 - f) \varepsilon' N_{jg}^{TT} + (1 - f) f' N_{jj}^{TT} \\ N_{BB} &= (1 - \varepsilon) (1 - \varepsilon') N_{gg}^{TT} + (1 - \varepsilon) (1 - f') N_{gj}^{TT} + (1 - f) (1 - \varepsilon') N_{jg}^{TT} + (1 - f) (1 - f') N_{jj}^{TT} \end{split}$$

Avec:

Wgg =
$$\varepsilon \varepsilon' W_{gg}^{TT}$$
, Wgj = $\varepsilon f' W_{gj}^{TT}$, Wjg = $f \varepsilon' W_{gg}^{TT}$, Wjj = $f f' W_{gg}^{TT}$

• ϵ, ϵ' : Efficacité d'isolation pour γ_1, γ_2 .

 $\epsilon = 1/(1 + C_{BA})$ avec C_{BA} : coefficient de leakage pour l'isolation $N_{BA}^{signal1}/N_{AA}^{signal1}$ $\epsilon' = 1/(1 + C_{AB})$ avec C_{AB} : coefficient de leakage pour l'isolation $N_{AB}^{signal2}/N_{AA}^{signal2}$

• f, f': Fake rates pour l'isolation..

$$f / (1-f) = (N_{AA} - N_{AA}^{\text{signal }\gamma 1}) / (N_{BA} - N_{AA}^{\text{signal }\gamma 1} c_{BA})$$
$$f' / (1-f') = (N_{AA} - N_{AA}^{\text{signal }\gamma 2}) / (N_{AB} - N_{AA}^{\text{signal }\gamma 2} c_{AB})$$