

Vers une mesure de l'angle γ de CKM via la désintégration $B^0 \rightarrow D^0 K^{*0}$ avec le détecteur LHCb

08.12.2011 JRJC 2011

Alexandra Martín Sánchez (LAL, Orsay)

Intro : status du Modèle Standard

Plan de cette présentation

- 3
- Généralités sur LHCb.
- Travail sur le détecteur :
 Mesure de l'efficacité du trigger L0 hadron.
- Analyse de physique :
 - Mesure de l'angle γ du Triangle d'Unitarité de la matrice CKM avec la désintégration $B^0 \rightarrow D^0 K^{*0}$ auprès du détecteur LHCb.

L'expérience LHCb

LA BORATOIRE DE L'ACCÉLÉRATEUR LINÉAIRE

4

Paires bb produites dans un cône centé sur l'axe du faisceau → spectromètre à un bras

Détecteur de vertex, trajectographe, système d'identification des particules, calorimètres, chambres à muons.

Alexandra Martín Sánchez - LAL Orsay

Physique à LHCb

5

- □ Collisions *pp* du LHC.
 - $\Box \quad Sqrt(s) = 7 \text{ TeV}.$

- A LHCb : $L_{int} = 38 \text{ pb}^{-1} (2010) + 1.1 \text{ fb}^{-1} (2011)$
- $L_{instantanée} \sim 350 \times 10^{30} \text{ cm}^{-2} \text{ s}^{-1}$
 - "Luminosity leveling", gérer la séparation entre les deux faiceaux pour la collision à LHCb pour maintenir la luminosité ~ constante.
- Physique :
 - Mesure des paramètres de la matrice CKM, "physique du b".
 - ^o "Physique du *charme*".
 - LHCb n'est pas qu'une usine à b, mais aussi une usine à c !
 - Recherche de la Nouvelle Physique, désintégrations rares.

08.12.2011

Alexandra Martín Sánchez – LAL Orsay

Efficacité du trigger L0 Hadron

Le trigger à LHCb

- Pile-Up system: nombre d'interactions par croisement.
- Calorimeter triggers: multiplicité dans le SPD, sélection du $e / \gamma / \pi^0 /$ hadron avec plus large E_{τ} .
- **D** Muon trigger: sélection des deux μ avec plus large p_{τ} .
- □ Décision \rightarrow comparaison avec les seuils fixés dans les "TCKs".

Calorimétrie à LHCb

- Mesure de l'énergie, identification des particules (PID), trigger.
 - SPD (Scintillator Pad Detector): identification des particules chargées.
 - PRS (PReShower detector): détection du début des gerbes EM.
 - ECal (Electromagnetic Calorimeter): mesure des gerbes EM.
 - Divisé en trois regions ("inner", "middle" et "outer").
 - Le L0 *e* / γ / π^0 trigger utilise l'information du ECal.
 - HCal (Hadronic Calorimeter): mesure des gerbes hadroniques.
 - Divisé en deux regions ("inner" et "outer").
 - Le L0 Hadron trigger utilise l'information du HCal.

Trigger hadronique L0

- 9
 - Reconstruction du hadron de plus large énergie transverse E₁.
 - HCal divisé en deux regions: "inner" et "outer" avec cellules de différent taille.
 - Lecture des dépôts dans les cellules:
 - □ Cartes électroniques "Front-End" (FE).
 - 1 FE = 8×4 cellules.
 - Candidats du trigger hadronique:
 - □ Clusters de 2 x 2 cellules → mesure de E_{τ}^{HCal} déposée.

- Pour chaque candidat, computer $E_{T}^{total} = E_{T}^{HCal} + E_{T}^{ECal}$.
 - Additonner le depôt dans le cluster en face dans le ECal.
- \Box L'électronique sélectionne comme candidat final celui avec plus large E_{τ}^{total} .
- Il est comparé avec un seuil. Décison :
 - Garder l'événement si $\mathbf{E}_{T}^{\text{total}} > \mathbf{E}_{T}^{\text{threshold}} \rightarrow \text{trigger hadron}$.
 - Si $E_{T}^{total} > E_{t}^{threshold}$ l'évément ne déclenche pas le trigger hadron,

mais il pourra encore être gardé par un autre trigger.

08.12.2011

Alexandra Martín Sánchez - LAL Orsay

Efficacité du LO Hadron

10

Définition :

- Deroportion de traces dans le calorimètre qui peuvent déclencher le trigger Hadron.
- Expérimentalement : proportion de traces des particules qui peuvent être identifiées avec un des clusters candidats (un per FE).
- □ Observable \rightarrow Distribution distance dr(projection, cluster) :
 - Projection : celle de la trace de la particule sur le Hcal.
 - Cluster : le candidat du trigger Hadron le plus proche à la projection.
- Dataset : π chargés de calibration issus de la désintégration $D^0 \rightarrow K \pi$.
- □ Ligne verticale : diagonale d'une céllule.

- Mais : ε dépend de l'énergie de la trace !
 - □ → Binner en p_{T} .

08.12.2011

Fit et calcul d'efficacité

11

• Optimiser le fit :

- Pic : deux / trois gaussiennes.
- Modèle pour le bruit de fond : événements mirroir (associations fortuites).

 $\epsilon = \frac{\text{events under peak}}{\text{events inside calo acceptance}}$

mirror event (-x,-y)

signal event

(x,y)

X

Outils LHCb : L0TisTosTool

TIS = "There is at least one trigger object which is independent of the signal"TOS = "There is at least one trigger object which is a part of the signal"

Max distance (projection, L0 cluster center) = 2 cell diagonals

Alexandra Martín Sánchez – LAL Orsay

Efficacité du L0 Hadron : mon algorithme vs. L0TisTos tool

Distribution dr(projection, cluster) :

 $\epsilon = \frac{\text{events under peak}}{\text{events inside calo acceptance}}$

Fitter la distribution.

LOTisTos tool:

 $\epsilon = \frac{\text{events TIS} \land \text{TOS}}{\text{events TIS inside acceptance}}$

 Compter les événements selon leur catégorie.

- **u** Utiliser seulement les clusters avec $E_T > E_T^{\text{threshold}}$, pour pouvoir comparer.
 - C'est ce qui est fait pour prende la décision TisTos, donc faire pareil dans mon algorithme.
- Considérer seulement des événements dans l'acceptance du Hcal.
- Comparer le résultat des deux méthodes.

Résultats et comparaison

14

Les deux méthodes sont en accord ! Suite : utiliser l'outil de la collaboration pour faire des bins plus fins. Efficacité du LO Hadron

15

Efficacités calculées directement à partir des données de calibration (\rightarrow s'affranchir du MC pour les estimer dans les analyses de physique).

pT_min (MeV)	pT_max (MeV)	Eff(inner)	err(inner)	Eff(outer)	err(outer)
0	200	0	0	0	0
200	400	0.0111801	0.00185291	0.0104895	0.00301214
400	600	0.01815	0.00197406	0.00667302	0.00251374
600	800	0.0194498	0.00182805	0.00730594	0.00257359
800	1000	0.0127831	0.000678902	0.0112507	0.00170603
1000	1200	0.0152634	0.00073213	0.00778308	0.00139243
1200	1400	0.0227564	0.000902734	0.0151753	0.00197744
1400	1600	0.0283993	0.00104909	0.021975	0.00244506
1600	1800	0.0314655	0.000913152	0.0302095	0.00254169
1800	2000	0.0350093	0.000862745	0.0378082	0.0025777
2000	2200	0.0409281	0.000995534	0.047842	0.0030453
2200	2400	0.0504182	0.00118741	0.0602579	0.00364378
2400	2600	0.0624047	0.00144076	0.0829016	0.00455338
2600	2800	0.0757187	0.00171629	0.117493	0.0058173
2800	3000	0.0908304	0.00205048	0.129483	0.0065231
3000	3200	0.110859	0.00245775	0.179622	0.00804462
3200	3400	0.131074	0.00287189	0.228018	0.00935118
3400	3600	0.158793	0.00340268	0.261582	0.0104464
3600	3800	0.186223	0.00388684	0.315167	0.0119045
3800	4000	0.220527	0.00450841	0.345836	0.0130276
4000	4200	0.25678	0.00507459	0.380192	0.0137192
4200	4400	0.311707	0.00586976	0.445269	0.0151371
4400	4600	0.341925	0.00645934	0.501068	0.016343
4600	4800	0.396478	0.00716885	0.54618	0.0168116
4800	5000	0.431646	0.00774577	0.589777	0.017807
5000	5200	0.458814	0.00835506	0.628986	0.0183904
5200	5400	0.51294	0.00882623	0.694175	0.0185343
5400	5600	0.559793	0.00955168	0.663987	0.0189392
5600	5800	0.604332	0.00997947	0.684426	0.021038
5800	6000	0.642557	0.0103526	0.723744	0.0213654
6000	6200	0.667912	0.0108822	0.774775	0.0198246
6200	6400	0.671546	0.011364	0.749319	0.0226236
6400	6600	0.706042	0.0118702	0.771831	0.0222728
6600	6800	0.714919	0.0122688	0.751634	0.0246995
6800	7000	0.745583	0.0129449	0.791822	0.0247546
7000	7200	0.785714	0.0127482	0.798419	0.025222
7200	7400	0.777426	0.0135102	0.833333	0.0253575
7400	7600	0.798817	0.0137909	0.865471	0.0228498
7600	7800	0.793932	0.0143817	0.834197	0.0267702
7800	8000	0.827637	0.0145591	0.857868	0.0248784
8000	8200	0.8507	0.0140544	0.863905	0.0263761
8200	8400	0.842202	0.0156157	0.842105	0.0295764
8400	8600	0.84453	0.0158749	0.865385	0.0273269
8600	8800	0.828092	0.0172754	0.882812	0.0284295
8800	9000	0.841849	0.0179983	0.910569	0.0257305
9000	-	0.884905	0.00474792	0.899465	0.00733445

Systematic error (inner) = 0.0252837 Systematic error (outer) = 0.00311535

08.12.2011

Utilité de cette mesure

- Elle est nécessaire dans les analyses de physique pour la mesure des rapports de branchement.
 - Calcul d'un nombre d'événements pour une désintegration :
 - $N = L_{int} \times 2 \times \sigma_{bb} \times f_B \times BR_{vis} \times \varepsilon$
 - \square N = nombre d'événements
 - $L_{int} =$ luminosité integrée contenue dans le dataset.
 - x 2 =conjugué de charge.
 - σ_{bb} = section efficace de production des paires bb.
 - $f_{R} = fraction d'hadronisation des quarks en mésons B.$
 - BR_{vis} = rapport de branchement visible (total) de la désintegration.
 - $\varepsilon = \text{efficacité totale de détection} = \varepsilon_{geometrique} \times \varepsilon_{trigger}$

Utilité de cette mesure

17

Monitorer le HCal dans le temps.

Suivi du changement des rates dans le HCal et du réajustement du gain dans les PMTs.

■ Mesure de l'angle γ du Triangle d'Unitarité de la matrice CKM avec la désintégration $B^0 \rightarrow D^0 K^{*0}$ auprès du détecteur LHCb.

Théorie CKM

19

 Matrice de mélange des quarks (états propres de masse ≠ états propres d'interaction faible)

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

Matrice CKM

 Matrice 3x3 → paramétrisable par 3 angles et un phase complexe :

$$V = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

Paramétrisation de Wolfenstein:

$$V = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$
08.12.2011

 $\begin{array}{ccc} \text{Unitarit}\acute{e} \to & V \, V^{*} = I \\ V_{ud} \, V_{ub}^{\ \ *} + \, V_{cd} \, V_{cb}^{\ \ *} + \, V_{td} \, V_{tb}^{\ \ *} = 0 \end{array}$

"Triangle d'Unitarité"

Alexandra Martín Sánchez - LAL Orsay

Status de la matrice CKM

- Triangle d'Unitarité assez bien contraint par les mesures des usines à *B* et du Tevatron.
- Valeurs du fit global :
 - $\Box \quad \alpha = (89 \pm 3)^{\circ}$
 - $β = (22 \pm 1)^{\circ}$
 - $\gamma = (69 \pm 3)^{\circ}$

- Mais valeur actuelle des mesures directes moins précise...
 - $\gamma = (76 \pm 11)^{\circ}$
- □ → Améliorer la précision de cette mesure pour assurer qu'il n'existe pas des inconsistences...

"Gamma aux arbres"

- 21
 - Mesure de γ avec diagrammes en arbre.
 - Pas sensibles aux contributions de Nouvelle Physique (à la différence des diagrammes en boucles).
 - □ Étude des interférences entre les transitions $b \rightarrow u(V_w)$ et $b \rightarrow c(V_{cb})$.
 - □ À LHCb :
 - Avec 10 fb⁻¹ de collisions pp à sqrt(s) = 14 TeV, sensibilité attendue de 2°.

$$\gamma = rg\left(-rac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}
ight)$$

- Avec les données déjà disponibles : observations des modes de désintégration nécessaires et premières mesures de paramètres.
- Plusieurs méthodes possibles pour la mesure de gamma :
 - Analyses dépendantes / indépendantes du temps, différents modes de désintégration...

Mon analyse : $B^0 \rightarrow D^0 K^{*0}$

- □ Interférences entre ces deux diagrammes : même état final accessible par des états intermédiares différents → mesure de γ .
- BR petit, mais large interférence (les deux diagrammes sont "color suppressed").
- Observables :

$$\gamma = rg\left(-rac{V_{ud}V^*_{ub}}{V_{cd}V^*_{cb}}
ight)$$

$$A_{ADS} = \frac{\Gamma(B^- \to D(K^+\pi^-)K^-) - \Gamma(B^+ \to D(K^-\pi^+)K^+)}{\Gamma(B^- \to D(K^+\pi^-)K^-) + \Gamma(B^+ \to D(K^-\pi^+)K^+)} \\ = \frac{2r_B r_D \sin(\delta_B + \delta_{K\pi}) \sin\gamma}{r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_{K\pi}) \cos\gamma} \\ R_{ADS} = \frac{\Gamma(B^- \to D(K^+\pi^-)K^-) + \Gamma(B^+ \to D(K^-\pi^+)K^+)}{\Gamma(B^- \to D(K^-\pi^+)K^-) + \Gamma(B^+ \to D(K^+\pi^-)K^+)} \\ = r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_{K\pi}) \cos\gamma$$

Alexandra Martín Sánchez - LAL Orsay

08.12.2011

Données 2010

Parenthèse : plots de masse en physique des particules.

- 24
 - Les particules finales vues par le détecteur sont combinées pour remonter jusqu'à la particule mère.
 - L'information du détecteur est utilisée pour identifier les particules dans une désintégration précise.
 - La même particule peut être combinée plusieurs fois avec d'autres particules qui pourraient être issues de la même mère.
 - Les mères ainsi reconstruites sont représentées dans les plots de masse :
 - Les événements sous le pic sont des "bonnes particules".
 - But \rightarrow les compter !
 - Fits compliqués...
 - Le reste c'est du bruit de fond (mauvaises associations).
 - Des coupures sont appliquées pour "faire ressortir le pic" (optimiser le rapport signal / bruit).

Opposite / Same Sign : signe entre le *K* du *D* et celui du *K*^{*}

08.12.2011

Alexandra Martín Sánchez - LAL Orsay

Données 2011 : Travail en cours !

$$m_{PDG}^{0}(B^{0}) = 5279.5 \text{ MeV}$$

 $m_{PDG}^{0}(B_{s}^{0}) = 5366.3 \text{ MeV}$

Données 2011 : Travail en cours !

Opposite / Same Sign : signe entre le *K* du *D* et celui du *K*^{*}

Données 2011 : Travail en cours !

Opposite / Same Sign : signe entre le *K* du *D* et celui du *K*^{*}

MERCI !

08.12.2011

Alexandra Martín Sánchez - LAL Orsay

31 Back up

08.12.2011

Alexandra Martín Sánchez – LAL Orsay