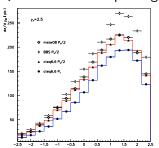
Photon + heavy-quark jet production at Tevatron and LHC

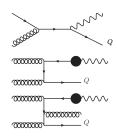

NGUYEN,Chi Linh Lapth-Annecy

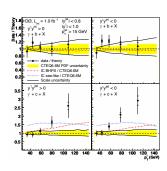
JRJC - December 9, 2011

Overview

- ▶ p p collisions at LHC at $\sqrt{s} = 7$ TeV opens a new era in research on particle physics, especially for QCD studies.
- ▶ Prompt photon at large- p_{\perp} allows for probing perturbative QCD at NLO and putting constraints on PDFs and FFs.

 $\gamma\text{-jet production}^{\scriptscriptstyle 1}$ at LHC computed at NLO by $_{\rm JETPHOX}$

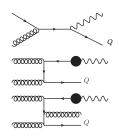

¹Z. Belghobsi et al., Phys. Rev. **D 79** (2009) 114024.


Overview

- ▶ p p collisions at LHC at $\sqrt{s} = 7$ TeV opens a new era in research on particle physics, especially for QCD studies.
- ▶ Prompt photon at large- p_{\perp} allows for probing perturbative QCD at NLO and putting constraints on PDFs and FFs.
- $ightharpoonup \gamma + b/c$ production is the promissing processes to probe PDFs in heavy quark sector.

Motivation

Interesting in comparison previous calculation² to Tevatron data³:
Discrepancy between data and theory

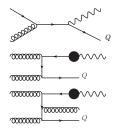

 $^{^2}$ T.P. Stavreva, and J.F. Owens, Phys. Rev. **D 79** (2009) 054017.

³V.M. Abazov et al. Phys. Rev. Lett. **102** (2009) 192002.

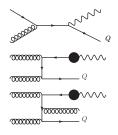
Motivation

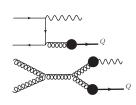
Interesting in comparison previous calculation⁴ to Tevatron data⁵:
Discrepancy between data and theory

lacking of g o Q fragmentation ?

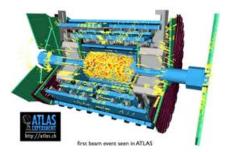

⁴T.P. Stavreva, and J.F. Owens, Phys. Rev. **D 79** (2009) 054017.

⁵V.M. Abazov et al. Phys. Rev. Lett. **102** (2009) 192002.


Goal


- Cross check with previous calculation, as well as understand Tevatron data.
- Including fragmentation of partons into heavy-quarks in the final state of the partonic process.

Goal


- Cross check with previous calculation, as well as understand Tevatron data.
- Including fragmentation of partons into heavy-quarks in the final state of the partonic process.

Goal

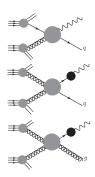
- Cross check with previous calculation, as well as understand Tevatron data.
- Including fragmentation of partons into heavy-quarks in the final state of the partonic process.
- Compare with first LHC data at 7TeV

Goal (behide the scence)

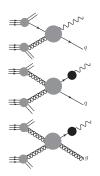
Goal

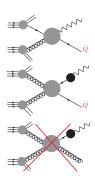
1000 flags: survival

Goal (behide the scence)

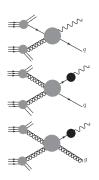

Goal

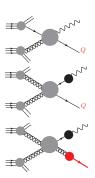
1000 flags:


Method


▶ Work based on the PHOX generators⁶, especially JETPHOX

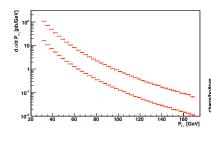
Method: based on the PHOX generators

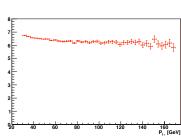

▶ Pick up the corresponding process to have a cross check



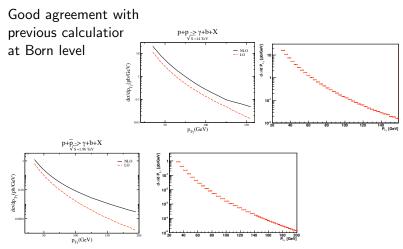
Method: based on the PHOX generators

- ▶ Pick up the corresponding process to have a cross check
- ▶ Including $g \rightarrow Q$ fragmentation: Improve current calculation

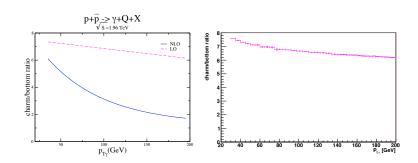




Born results


Left: $\gamma+c$ and $\gamma+b$ at LHC

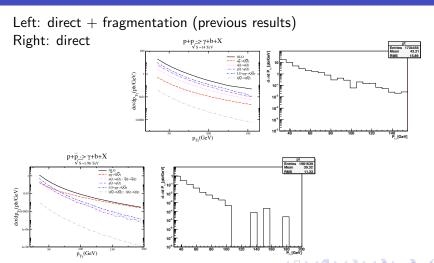
Right: $(\gamma+c)/(\gamma+b)$ ratio at LHC



Cross check at Born

Cross check at Born

Good agreement with previous calculation at Born level



cross check (behind the scences)

"direct" photon contribute

Conclusion and outlook

- ▶ At Born level, good agreement results were obtained
- Direct contribution at NLO calculation is done.
- Contribution of partons fragmenting into heavy-quarks will be included
- ▶ Phenomenology at Tevatron and LHC.