

Search for the Higgs Boson in the $H \rightarrow \gamma \gamma$ channel

Background studies, statistical analysis and results

Heberth Torres, LPNHE

Journées de Rencontre des Jeunes Chercheurs 2011 Les Balcons du Lac - Annecy 08/12/2011

Search for the Higgs Boson in the $H \rightarrow \gamma \gamma$ channel

- Background studies
- Signal studies (O. Davignon)
- Statistical analysis and results
- Perspectives (O. Davignon)

Particles through ATLAS

BACKGROUND

Background processes

• Drell-Yan events, when both electrons are misidentified as converted photons.

Event selection

- Start with a 20 GeV diphoton trigger (EF_2g20_loose).
- Use Egamma GRL for central electrons and photons.
- Require at least one PV ($N_{tracks} \ge 3$)
- At least two photons:
 - $E_{\perp 1} > 40$ and $E_{\perp 2} > 25$ GeV
 - $|\eta| < 1.37 \& 1.52 < |\eta| < 2.37$
 - LAr cleaning and object quality
 - Shower shape photon ID (isEM tight)
 - Calorimetric isolation $(E_{\perp}^{isol} < 5GeV)$

Shower shape based **photon ID**:

- Energy leakage to HCal
- 3 S2 discriminant variables
- 5 var. exploiting the S1 high granularity

Calorimetric isolation:

- \bullet Sum of E_{\perp} of calo cells in a cone (0.4), excluding the cluster cells.
- Out-of-(inner)-cone leakage corrections.
- Ambient energy correction event per event (to reduce the effects of underlying event and pile-up).

Diphoton invariant mass distribution

- The $H \rightarrow \gamma \gamma$ channel has an important amount of background w.r.t. the expected signal.
- This background has a smooth decreasing shape.

Background decomposition

Extraction of 4 background components, $\gamma\gamma$, γ -jet, jet- γ and jet-jet, through different data-driven methods.

2D fit of the two photons calo-isolation distributions (PDFs obtained from data)

2x2D sideband, one for the leading and another one for the sub-leading.

2D sideband: define two sidebands, and so 4 region, 3 dominated by bkg., count the events and extrapolate the background by rule of three.

Drell-Yan background

 After counting the number of Z→ee events reconstructed as ee and eγ events the electrons mis-ID rates is estimated to be:

 ρ = 9.68 ± 0.05 ± 0.78 %

- The expected background is extrapolated from the e⁺e⁻ mass spectrum and ρ
- For 1.08 fb⁻¹, the expected number of evts. in the mass window 100 and 160 GeV is:

85.8 ± 0.9 ± 13.8

Background decomposition results

Method	Νγγ	$N_{\gamma j}$	$N_{j\gamma}$	N_{jj}	$\gamma\gamma$ Purity
2x2D Sideband	$3653 \pm 95^{+277}_{-285}$	$857 \pm \! 48^{+232}_{-229}$	$252 \pm 30^{+142}_{-133}$	$215 \ {\pm} 21^{+126}_{-124}$	72 %
1x2D Sideband	$3500 \pm 2^{+665}_{-599}$	$1243 \pm 12^{+504}_{-560}$		$234\ {\pm}8^{+95}_{-105}$	69 %
2D Template Fit	$3893 \pm 80^{+174}_{-202}$	$769 \pm 25^{+43}_{-112}$	$218 \pm 19^{+49}_{-6}$	$192 \pm 9^{+108}_{-54}$	75 %

- Good agreement between the different methods is observed.
- ~70% diphoton pure sample!!
- The background composition is extracted as a function of the mass bin by bin.

Conversion-η categories

Resolution motivated categorization.

Even if it was a resolution motivated categorization, large part of the gain is due to different Sig/Bkg. Already exploiting kinematic differences between signal and background.

Background parameterization

- For the moment using a single exponential function.
- Systematic bias from the model choice has been estimated:
 - Fitting large diphoton MC samples (Diphox) and looking at the residuals.
 - Fitting toys pseudo experiments with signal plus exp. background model:
 - Bkg toys generated taking Diphox distribution or different functional forms fitted over data.
 - Adding 50 signal events at 120 GeV.
 - Then fitting with S+B model.
- A systematic uncertainty of ±3 ±5 events is considered on the fitted signal rate, depending on the mass hypothesis.
- The fitting function will have to be revisited with the increasing data.

Statistical analysis and results

- Observed limits
 - 1. Construct the likelihood function

- Observed limits
 - 2. Compare the compatibility of the *data* with the *background-only* and *signal+background* hypotheses (for given m_H and μ values)

If, for $\mu = 1$, $CL_s \le \alpha$, we would state that the SM Higgs boson is excluded with (1- α) CL_s confidence level

Then, we adjust μ until we reach CL_s = 0.05 $\Rightarrow \mu^{95\% CL}$ 17

Expected limits

- Generate a large set of background-only pseudo-data and calculate CLs and $\mu^{95\%\text{CL}}$ for each of them.
- Build a cumulative probability distribution starting from cero.
- The point at which the cumulative probability distribution crosses the 50% line is the median expected value $(\pm 1\sigma \Rightarrow 16\% \text{ and } 84\%; \pm 2\sigma \Rightarrow 2.5\% \text{ and } 97.5\%).$

Exclusion limits

The variations of the observed limit, between 2 and 5.8 SM, are consistent with the expected statistical fluctuations around the median limit.

Quantifying an excess of events

• Use the probability p_0 for the background to fluctuate and give an excess of events as large or larger than the observed one.

20

Quantifying an excess of events

No excess is found in the diphoton invariant mass distribution.

Conclusion

 No significant excess observed and limits are set in agreement with the sensitivity.

Next week results with 5fb⁻¹ of luminosity will be published!

Backup

Systematic uncertainties

On signal yield Source (per event) Photon identification efficiency ±10% Pile-Up ±4% Isolation ±3% $\pm 3.7\%$ Luminosity trigger efficiency ±1% Modelling pT(H) +1% Total ±12%

Theoretical Uncertainty: +20-15%

Background modelling:

+5 -3 events for 110-150 GeV

This uncertainty is propagated in each category proportionally to the number of background events.

On mass resolution

Source	(per event)	
Energy Resolution	±12%	
Energy Calibration	±6%	
Pile-Up	±3%	
Angle Measurement	±1%	
Total	±14%	

All the systematic uncertainties are taken as fully correlated between the different categories. The impact of uncorrelated systematics and migration of events between categories was found to be negligible.

CMS results

