Workshop on prompt photon physics and simulation at hadron colliders - LPNHE, Paris, 2012

1

Direct photons at CMS

Philippe Gras¹ On behalf of the CMS collaboration

¹ CEA/IRFU - Saclay

CMS

- Photon production in p-p collision motivation:
 - Test of pQCD
 - Probing of gluon parton distribution function
 - Background study of Higgs→γγ
- Outline:
 - CMS detector and photon reconstruction
 - Inclusive direct photon production
 - Direct diphoton production
 - A closure look at the isolation criteria

CMS Detector

March 30, 2012

Philippe Gras CEA/IRFU

Photon reconstruction

- Photons reconstructed through energy deposited in ECAL.
- The presence of material in front of ECAL causes photons to convert in e⁺e⁻ pairs (up to 70 % in region with largest material).
 - will be exploited for the inclusive direct photon cross-section measurement
- The 3.8 T solenoidal magnetic field leads the energy to be spread along ϕ
- Same algorithm used for the trigger
 - Prompt electrons rejected by applying a veto with the pixel detector.

Inclusive direct photon production *Phys. Rev. D84052011 (2011) Phys.Rev.Lett. 106 (2011) 082001*

Measurement

- Signal:
 - photon with ΣE_{T} of the particles surrounding it within a cone R= $\sqrt{\Delta \phi^2} + \Delta \eta^2 = 0.4$, smaller than 5 GeV.
- Background
 - Mainly pairs of collinear photons from π⁰ and η decays, reconstructed as a single photon
 - rejection based on isolation and on ECAL shower transverse shape.
 - remnant statistically substracted
- Measurement performed in 4 η -bins and 15 E_{τ} bins.

Combines two methods

- Conversion method, exploiting converted photon, competitive at low E_T range
- Isolation method, using all photons, competitive at higher E_{T} range

Philippe Gras CEA/IRFU

Event selection

- Trigger requiring one photon candidate with $E_T > E_T^{\text{threshold}}$.
 - $E_{T}^{threshold}$ raised with LHC luminosity:
 - 20, 30, 50, and 70 GeV
 - Trigger efficiency for events selected by the analysis: 99.8 ± 0.1 % in the barrel, 99.0 ± 0.7 % in the endcap
- Photon identification:
 - Spread extension along η of energy deposited in ECAL required to be compatible with a single photon shower.
 - Requiring the energy deposited by the photon candidate in HCAL to be less that 5% than the energy deposited in the ECAL
 - e^{+/-} veto
- Isolation, defined in a cone R < 0.4
 - ΣE_{T} in ECAL
 - ΣE_{T} in HCAL
 - Σp_{τ} of charged particles measured in the tracker
 - Combined variable defined as the sum of the 3 above variables

March 30, 2012

Philippe Gras CEA/IRFU

Veto applied on the 3 variables in the conversion method

Used to extract the signal yield in the isolation method

Photon conversion method

Tracker tomography with converted γ

- Fit of signal and background yield performed on E_{T}/p_{T} distribution
- PDF used for the fit obtained from the Monte Carlo simulation.
 - Background PDF uncertainties estimated by comparing with PDF obtained with a side-band control sample.
 - Signal PDF uncertainties estimated by varying the PDF peak position and width

8

Isolation method

- Uses the sum of the three isolation variable as discriminant observable.
- PDF parametrized with analytic functions
 - Signal: e^a* ⊗ Gauss(μ,σ,x)
 - Background: (1-p1(x-p0))^{p2} x (1-e^{p3(x-p0)})
 - parameters are either let free in the fit or constrained by corrected MC and control samples:
 - Z→e⁺e⁻ for signal
 - Sample from a side-band region

Results: isolated prompt photon cross section

Results of the two methods are combined using the Best Linear Unbiased Estimate method

Comparison with theory

Comparison with theory

Philippe Gras CEA/IRFU

Direct diphoton production JHEP 1201 (2012) 133

March 30, 2012

Measurement

- Measurement signal: two signal photons
- Measurement background:
 - Two background photons, 1 background + 1 signal photon.
 - Drell-Yan: subtracted (POWHEG NLO + PS + full simulation)
- Signal photon:
 - photon with ΣE_{T} of the particles surrounding it within a cone $R=\sqrt{\Delta \phi^2 + \Delta \eta^2} = 0.4$, smaller than 5 GeV.
- Background photon:
 - Mainly pairs of collinear photons from π^0 and η decays, reconstructed as a single photon
 - rejection based on isolation and on ECAL shower transverse shape.
 - remnant statistically substracted
- Measurement of differential cross sections as function of m_{vv} , $p_{T,vv}$, $\Delta \phi_{vv}$, $\cos \theta^* = \tanh(\Delta y_{vv}/2)$ in two pseudorapidity regions:

 $|\eta| < 1.44$ and $|\eta|$ in [0, 1.44] \cup [1.56, 2.5]

Event selection

- Two isolated photons with $E_{T} > 23$, 20 GeV
- Photon separated by R > 0.45 (mutual isolation exclusion)
- Photon identification:
 - Spread extension along η of energy deposited in ECAL required to be compatible with a single photon shower.
 - HCAL photon deposit < 5% of ECAL photon deposit (in R < 0.15)
- Photon isolation:

• ECAL:
$$\sum_{\substack{0.06 \leq \mathrm{R} < 0.3 \\ \Delta \eta \gtrsim 0.04}} \mathrm{E_T} < 0.2 \, \mathrm{E_T}(\gamma)$$
 (for trigger)

- HCAL: $\sum_{0.15 < \mathrm{R} < 0.4} \mathrm{E_{T}} < 2 \, \mathrm{GeV} \ \mathrm{(barrel)}, 4 \, \mathrm{GeV} \ \mathrm{(endcap)}$
- Tracker: $\sum_{\substack{0.04 < \mathrm{R} < 0.4\\ \Delta\eta > 0.015}} \mathrm{p_T} < 2\,\mathrm{GeV}~\mathrm{(barrel)}, 4\,\mathrm{GeV}~\mathrm{(endcap)}$

```
and no track with: R < 0.4, p_{T} > 3 GeV,
```

impact parameter d₀, d_z < 1, 2 mm,

with one hit in first pixel layer

(called impinging track)

0

Tracher ECAL

HCAL

Signal and background PDFs

- Background statistically subtracted using an ECAL isolation variable distribution of individual photons.
 - Threshold applied to exclude MIPs from the isolation variable sum
- Probability density function (PDF) extraction:
- Signal photon: deposits in isolation area due to pile-up and underlying events
 - Uses *random cone technique*: isolation calculated from an inclusive photon sample around a "random" direction: at π/2 ± π/4 from photon in azimuth and at same η

 Systematic uncertainty on the PDF estimated by comparing with the PDFs obtained with three alternative methods: electrons from W, electrons from Z and MC

Signal and background PDFs

Background photon: *impinging track* method

- Photon background sample obtained by one charged particle within R < 0.4 around the photon candidate tagged by a reconstructed track issued from the primary vertex
 - measurement sample: no track
 - control sample for background photon PDF extraction: one track
- The ECAL isolation is corrected for the energy deposited by the charge particle (deposited energy not counted in the transverse energy sum)

- Systematic uncertainty on the probability density function (PDF):
 - same method applied to extract PDF of one-impinging track events from a two-impinging track sample. Uncertainty estimated by comparing the direct PDF and the one extracted from the two-impinging track method.
 - also estimated from comparison with the simulation

Diphoton: azimuthal angle between the two photons

Diphoton: azimuthal angle between the two photons

Diphoton: mass

Diphoton: mass

Diphoton: diphoton transverse momentum

Diphoton: scattering angle

Diphoton: scattering angle

NNLO prediction: azimuthal angle between the two photons

CMS

- Prediction uses Frixione isolation -> no fragmentation contribution.
- Measurement: cone isolation.

A closure look at experimental isolation criteria

Experimental isolation

- Quote from Phys. Rev. D84 052011 (2011): "In the simulation, a signal photon must have an isolation sum of less than 5 GeV."
 - \rightarrow used for efficiencies and unfolding
 - \rightarrow a generator level criterion
- But the measurements assumes for signal photons no energy deposited by hadrons from the main interaction in their isolation area and apply severe cuts: see next slide.

0 HCAL ECAL inner: ~0.15 Tracher inner: ~0.06 strip: ~0.04 inner: 0.04 strip: 0.015 outer cone: 0.4

Experimental isolation

- The measurements assumes for signal photons no energy deposited by hadrons in their isolation area
- Conversion method:
 - H/E_{R<0.15} < 5%
 - I_{track} < 2 + 0.001 E_T (GeV)
 - I_{ECAL} < 4.2 + 0.003 E_T (GeV)
 - I_{HCAL} < 2.2 + 0.001 E_T (GeV)
- Isolation method:
 - H/E_{R<0.15} < 5%
 - No track associated to the photon
 - Isolation compatible with a direct photon. Effect on the isolation variable distribution of photons from ISR/FSR and parton shower evaluated in Pythia and included in the systematic uncertainties
- Impinging track method (diphoton):
 - H/E_{R<0.15} < 5%
 - No track associated to the photon
 - No track from primary vertex with $P_T > 3GeV$ within R < 0.4
 - I_{track} < 2 GeV (barrel, |η|<1.44), 4 GeV (endcap)
 - I_{HCAL} < 2 GeV (barrel, |η|<1.44), 4 GeV (endcap)
 - ECAL isolation compatible with deposits from Pile-up and underlying events

Isolation also applied in the photon direction of variable distribution of

Isolation also applied in the

photon direction

Isolation also applied in the photon direction

Effect of isolation parameters on prediction

Effect on total cross section is limited

DIPHOX, Binoth et al. Parton level study, *Ph*. *Gras. Not CMS approved.*

Effect of isolation parameters on prediction

CMS

Effect on mass distribution

DIPHOX, Binoth et al. Parton level study, *Ph* .*Gras. Not CMS approved.*

Effect of isolation parameters on prediction

Effect on the distribution of the azimuthal angle separating the photons

DIPHOX, Binoth et al. Parton level study, *Ph* .*Gras. Not CMS approved.*

Conclusions

- Inclusive direct photon cross-section measurement: double differential as function of E_T and η. Probed 0.007< x_T < 0.114, good agreement with theoretical NLO prediction.
- Direct diphoton cross-section measurement: contribution in region of low $\Delta \phi_{\gamma\gamma}$ underestimated with NLO + Fragmentation. Good agreement with NNLO w/o fragmentation
- Severe isolation applied on data
 - Far from the simplified cone isolation applied in the prediction
 - Not evident that such a simplified cone isolation describes better the experimental cone isolation than a Frixione isolation would.

Appendices

Inclusive direct photon cross-section measurmen: signal selection efficiency and unfolding

- $\boldsymbol{\epsilon}_{\text{trig}} \mathrel{\textbf{X}} \boldsymbol{\epsilon}_{\text{reco}} \mathrel{\textbf{X}} \boldsymbol{\epsilon}_{\text{ID1}} \mathrel{\textbf{X}} \boldsymbol{\epsilon}_{\text{ID2}}$
 - $\varepsilon_{trig} \sim 100\%$ (Data Tag & Probe)
 - ε_{reco} ~ 99% (MC)
- ϵ_{ID1} : Tag and Probe (T&P), Z $\rightarrow e^+e^-$
- $MCx \frac{T\&P(data)}{T\&P(MC)}$
- ϵ_{ID2} .
 - Isolation: pixel veto
 - T&P, $Z \rightarrow \mu^+ \mu^- \gamma$
 - Conversion: conversion selection efficiency
 - Exploits isolation method to estimate event yield after and before applying conversion selection on a control sample selected without isolation cuts.

Unfolding

Correction factor is computed from simulation for each $\eta,\,\mathsf{E}_{_{\!T}}$ bin to take into account the finite resolution of the detector:

- U = 0.90 to 1.03 in the barrel
- U = 1.03 to 1.16 in the endcap

Philippe Gras CEA/IRFU

Photon deposit shape variable

• Spread extension along η of energy deposited in ECAL required to be compatible with a single photon shower: $\sigma_{nn} \leq 0.010$ (barrel), 0.030 (endcap)

$$\sigma_{\eta\eta}^{2} = \frac{\sum_{i}^{5\times5} w_{i}(\eta_{i} - \bar{\eta}_{5\times5})^{2}}{\sum_{i}^{5\times5} w_{i}},$$
$$w_{i} = \max\left(0, 4.7 + \ln\frac{E_{i}}{E_{5\times5}}\right),$$

