

NNLO computation for diphoton direct contribution at hadronic colliders

Daniel de Florian Universidad de Buenos Aires - Argentina

In collaboration with S.Catani, L.Cieri, G.Ferrera, M.Grazzini

Workshop on Photon Physics and Simulation at Hadron Colliders Paris, March 30 2012

Oirect Contribution

We know higher order corrections are needed

Full NNLO control of Diphoton production

NNLO using q_T -Subtraction S.Catani, M.Grazzini

- Originally used for Higgs and Drell-Yan
- Generalized to any process with final state colorless system **F**

S.Catani, L.Cieri, DdeF, G.Ferrera, M.Grazzini

```
Fully exclusive NNLO code for \ pp \to F
```


First exclusive NNLO in pp collisions with two final state particles S.Catani, L.Cieri, DdeF, G.Ferrera, M.Grazzini

Two-loop amplitudes available C.Anastasiou, E.W.N.Glover, M.E.Tejeda-Yeomans

Diphoton + jet at NLO

V.Del Duca, F.Maltoni, Z.Nagy, Z.Trocsanyi

Separation between direct and resolved component NOT physical in general (beyond LO)

Higgs search at 7 TeV : scale dependence

new channels Scale does not represent TH uncertainties at LO and NLO

All channels open at NNLO estimate of TH uncertainties

Higgs search at 7 TeV : scale dependence

new channels Scale does not represent TH uncertainties at LO and NLO

All channels open at NNLO estimate of TH uncertainties

Higgs search at 7 TeV : scale dependence

new channels Scale does not represent TH uncertainties at LO and NLO

All channels open at NNLO estimate of TH uncertainties

Channels @ 14 TeV

Box only ~22% of NNLO correction

Main contribution from qg channel (corrections to NLO dominant channel)

Discrepancy found between NLO and Experimental data at low $\Delta\phi_{\gamma\gamma}$

NNLO Corrections much larger in some kinematical regions

"away from back-to-back configuration"

NLO effectively lowest order

NNLO corrections essential to understand the data

In general, extra radiation at NNLO accuracy (hard and soft)

- •Sizable corrections where effectively NNLO (40-55 %)
- •Fills in the gaps where NLO is effectively Born (huge K factor)
- Extends kinematical range coverage
- •First order with all channels included
- •First (reliable) estimate of TH uncertainties

Future $2\gamma \mathrm{NNLO}$

User-friendly version and release code (Later) Implement subtraction terms — standard cone

Standard Photon Isolation

Smooth Photon Isolation **S.Frixione**

 $E_T^{had}(\delta) \le E_{T\,max}^{had}$

 $E_T^{had}(\delta) \leq E_{T\,max}^{had} \chi(\delta)$

only soft emission allowed if collinear to photon no quark-photon collinear divergences no fragmentation component (only direct) Direct contribution well defined

More restrictive than usual cone : lower limit on cross section

In real (TH)life... how much different? NLO comparison $R_0 = 0.4$ n = 1

 ≤ 1

Standard Photon Isolation

Smooth Photon Isolation S.Frixione

$$E_T^{had}(\delta) \le E_{T\,max}^{had}$$

 $E_T^{had}(\delta) \le E_{T\,max}^{had} \ \chi(\delta)$

only soft emission allowed if collinear to photon only soft emission allowed if collinear to photon of a quark-photon collinear divergences on fragmentation component (only direct) Direct contribution well defined

More restrictive than usual cone : lower limit on cross section

In real (TH)life... how much different? NLO comparison $R_0 = 0.4$ n = 1

CMS Higgs cuts at 7 TeV

Standard: direct+fragmentation (Diphox)

E_{Tmax}^{had}	standard/smooth	Frag. comp. (cone)
2 GeV	< %	6%
3 GeV	< %	10%
4 GeV	١%	13%
5 GeV	3%	16%
0.05 рт	< %	8%
0.5 рт	11%	52%

if isolation tight enough, hardly any difference between standard and smooth cone

Backup Slides

Asymmetric cuts and pQCD

With Higgs search cuts at 7 TeV

