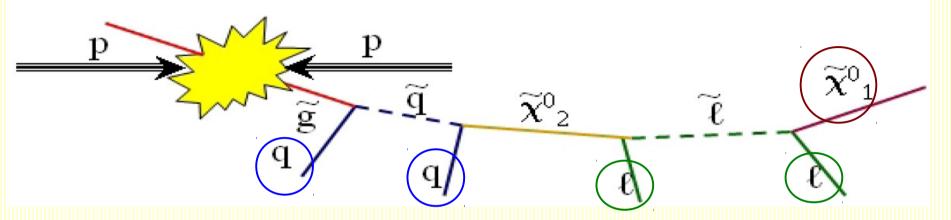
SUSY searches with ATLAS (focusing on R-parity conservation)

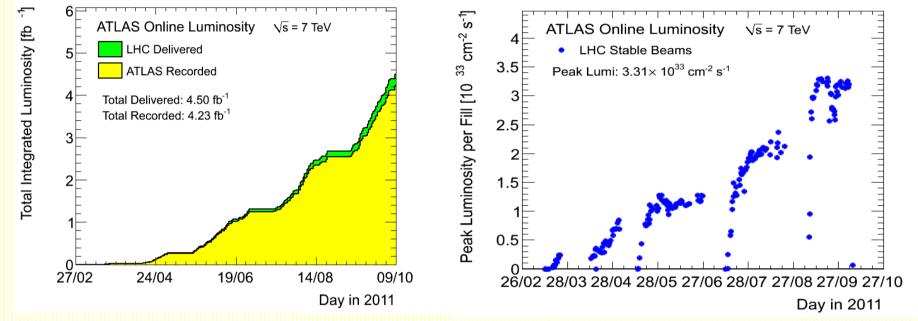
Marie-Hélène Genest (LMU Munich)

GDR Terascale, Marseille, 13.10.2011


GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Typical signature


- Pair of gluinos/squarks produced by strong interactions
- Their decays give high- p_T jets and charginos/neutralinos
- Charginos/neutralinos decays can give leptons and the decay chain stops when the LSP is produced (R-parity conserving scenarios)
- The pair of stable LSP produced escapes the detector undetected leading to high transverse missing energy

multi-Jets + n leptons + E_{T}^{miss}

Standard Model backgrounds (tt, W+jets, Z+jets, QCD jets and dibosons)

Data accumulated in 2011

Excellent LHC performance

Very good detector efficiency:

Inner Tracking Detectors				Calorimeters			Muon Detectors			Magnets		
Pixel	SCT	TRT	LAr EM	LAr HAD	LAr FWD	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
99.9	99.9	100	90.0	91.3	94.8	98.2	99.5	99.7	99.9	99.6	99.6	99.4

Luminosity weighted relative detector uptime and good quality data delivery during 2011 stable beams in pp collisions at vs=7 TeV between March 13th and August 13th (in %). The inefficiencies in the LAr calorimeter will largely be recovered in the future.

ATLAS SUSY search results https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

Short Title	Date	√s (TeV)	Lumi (pb ⁻¹)	Plots and Document	Journal
Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS	09/2011	7	33	arXiv:1109.2242, Plots+Aux. Material	Submitted to PLB
SUSY Search with Diphoton and Etmiss	07/2011	7	36	ArXIV:1107.0561, Plots+Aux. Material	Accepted by EPJCL
Search for Heavy Long-Lived Charged Particles	06/2011	7	37	ArXIV:1106.4495, Plots+Aux. Material	PLB 703 (2011) 428
Same-sign dilepton search with a simplified SUSY model	06/2011	7	35	ATLAS-CONF-2011-091, Plots+Aux. Material	No
Combined 0 and 1 lepton + jets + Etmiss searches	04/2011	7	35	ATLAS-CONF-2011-064, Plots+Aux. Material	No
Combined 0 and 1 lepton + jets + Etmiss searches SUSY Search with lepton pairs and Etmiss SUSY Search with identical flavour lepton pairs and Etmiss Search for an electron-muon resonance	03/2011	7	35	ArXiV:1103.6214, Plots+Aux. Material	EPJC 71 (2011) 1682
SUSY Search with identical flavour lepton pairs and Etmiss	03/2011	7	35	ArXIV:1103.6208, Plots+Aux. Material	EPJC 71 (2011) 1647
Search for an electron-muon resonance	03/2011	7	35	ArXIV:1103.5559, Plots+Aux. Material	PRL 106 (2011) 251801
SUSY Search with Etmiss and b-jets	03/2011	7	35	ArXiV:1103.4344, Plots+Aux. Material	PLB 701 (2011) 398
SUSY Searches with Multilepton, Jets and Etmiss	03/2011	7	34	ATLAS-CONF-2011-039, Plots+Aux. Material	No
Search for Stable Hadronising Squarks and Gluinos	03/2011	7	34	ArXIV:1103.1984, Plots+Aux. Material	PLB 701 (2011) 1
SUSY Search with jets and Etmiss	02/2011	7	35	ArXIV:1102.5290, Plots+Aux. Material	PLB 701 (2011) 186
SUSY Search with one lepton, jets, and Etmiss	02/2011	7	35	ArXiV:1102.2357, Plots+Aux. Material	PRL 106 (2011) 131802

	Short Title	Date	√s (TeV)	Lumi (fb ⁻¹)	Plots and Document	Journal
~	SUSY Search with one lepton, jets and Etmiss	09/2011	7	1.1	ArXiV:1109.6606, Plots+Aux. Material	Submitted to PRD
~	SUSY Search with jets and Etmiss	09/2011	7	1.1	ArXIV:1109.6572, Plots+Aux. Material	Submitted to PLB
	Search for an electron-muon resonance	09/2011	101	1.07	ArXiV:1109.3089, Plots+Aux. Material	Submitted to EPJCL
~	SUSY Search with bjets, 1 lepton, and Etmiss	08/2011	۰. ۲	1.03	ATLAS-CONF-2011-130, Plots+Aux. Material	No
~	SUSY Search with bjets, and Etmiss	Corr.	7	0.83	ATLAS-CONF-2011-098, Plots+Aux. Material	No
	SUSY Search with one lepton, jets, and Etmiss	06/2011	7	0.16	ATLAS-CONF-2011-090, Plots+Aux. Material	No
	SUSY Search with jets and Etmiss	06/2011	7	0.16	ATLAS-CONF-2011-086, Plots+Aux. Material	No
~	SUSY search with Large jet Multiplicity and Etmiss	10/2011	7	1.3	ArXiV:1110.2299, Plots+Aux. Material	Submitted to JHEP

Discussed today

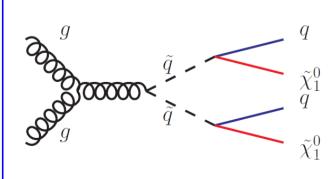
+ some preliminary results

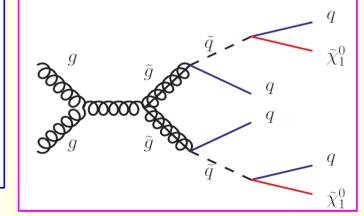
Some useful variables

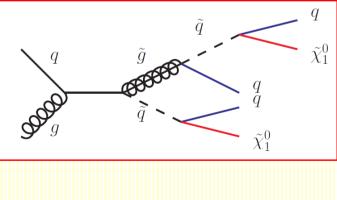
- $\Delta \phi$ (jets, E_T^{miss})
 - Cutting on $\Delta \phi$ eliminates events in which E_t^{miss} is closely related to one of the leading jets (QCD)
- Effective mass m_{eff} (scalar sum of sel. jets & leptons p_T and E_T^{miss})
 - peaks at a value which is correlated with the mass of the pair of SUSY particles produced in the *pp* interaction
- The transverse mass m₁ $m_T^2 \equiv 2|\mathbf{p}_T^\ell||E_T^{\text{miss}}| 2\mathbf{p}_T^\ell \cdot E_T^{\text{miss}}$
 - useful to remove BG in which a W decays leptonically

jet

Δφ


The 0-lepton channel


Select events with jets, missing transverse momentum and no lepton (veto e/μ)

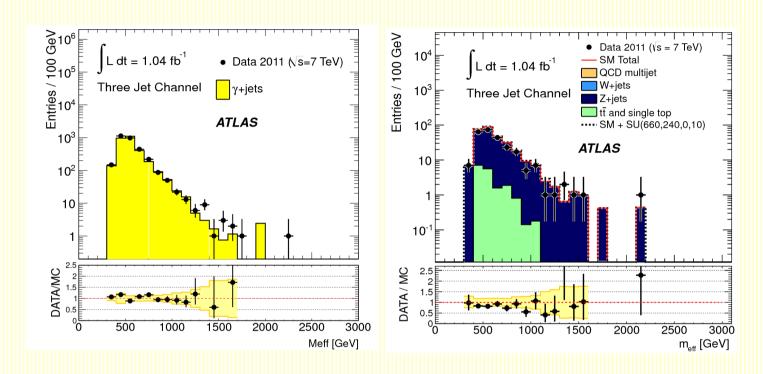

arXiV:1109.6572 submitted to PLB

Defining the signal regions

Signal Region	≥ 2-jet	\geq 3-jet	≥ 4-jet	High mass
$E_{ m T}^{ m miss}$	> 130	> 130	> 130	> 130
Leading jet $p_{\rm T}$	> 130	> 130	> 130	> 130
Second jet $p_{\rm T}$	> 40	> 40	> 40	> 80
Third jet $p_{\rm T}$	_	> 40	> 40	> 80
Fourth jet $p_{\rm T}$	—	—	> 40	> 80
$\Delta \phi$ (jet, $\vec{P}_{\rm T}^{\rm miss}$) _{min}	> 0.4	> 0.4	> 0.4	> 0.4
$E_{\rm T}^{\rm miss}/m_{\rm eff}$	> 0.3	> 0.25	> 0.25	> 0.2
m _{eff}	> 1000	> 1000	> 500/1000	> 1100

7

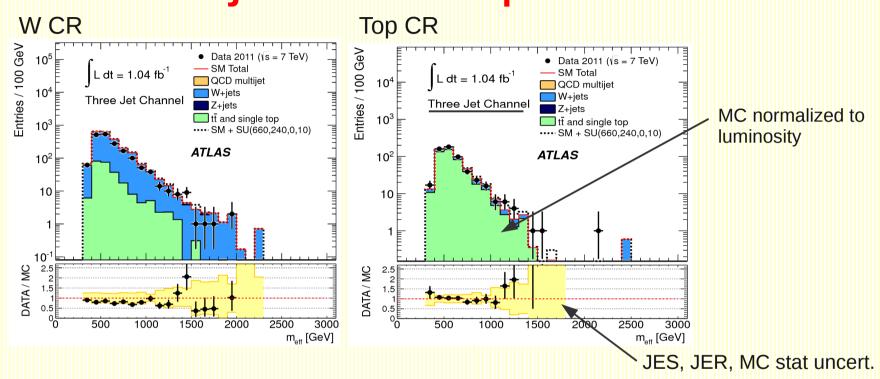
Defining the signal regions


Signal Region	≥ 2-jet	≥ 3-jet	≥ 4-jet	High mass	
E ^{miss}	> 130	> 130	> 130	> 130	
Leading jet $p_{\rm T}$	> 130	> 130	> 130	> 130	Trigger requirements
Second jet $p_{\rm T}$	> 40	> 40	> 40	> 80	
Third jet $p_{\rm T}$	_	> 40	> 40	> 80	
Fourth jet $p_{\rm T}$	_	_	> 40	> 80	Reject the QCD BG
$\Delta \phi$ (jet, $\vec{P}_{\rm T}^{\rm miss}$) _{min}	> 0.4	> 0.4	> 0.4	> 0.4	
$E_{\rm T}^{\rm miss}/m_{\rm eff}$	> 0.3	> 0.25	> 0.25	> 0.2	
m _{eff}	> 1000	> 1000	> 500/1000	> 1100	Optimize for SUSY

Main backgrounds

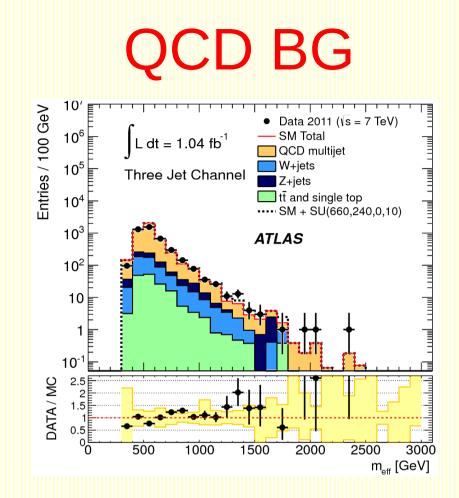
Z+jets: vv decay W+jets: τv decay or missed e/μ Top pair production: τ decay of a W QCD multijets

- Evaluate each BG in a control region (5 CRs x 5 SRs)
- Extrapolate from the CR to the SR with a transfer factor
- Profile likelihood fit (correlated systematic uncertainties and CR cross-contamination)


Z+jets BG

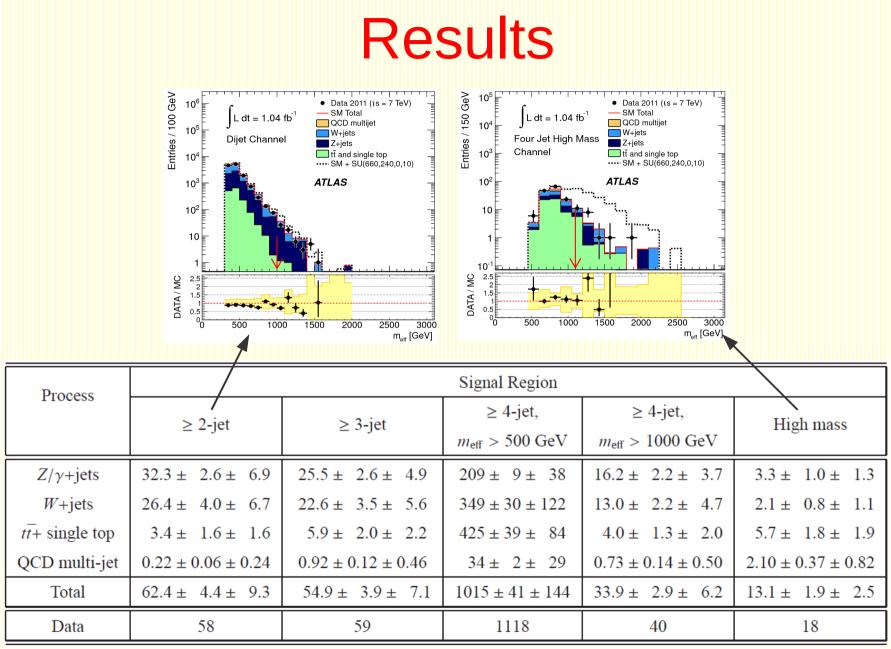
Two control regions are used:

- γ + jets, where the photon is added the the E_{T}^{miss}
- Z(\rightarrow II)+jets, where the leptons are removed ($\rightarrow E_T^{miss}$)

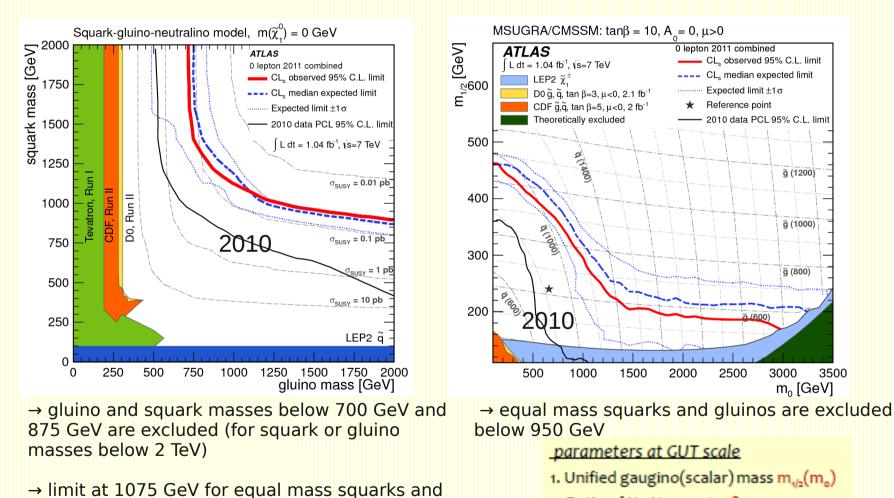

W+jets and top BG

- Select 1-lepton events with $30 < m_{T} < 100 \text{ GeV}$

- Split the top from W by asking for no b-tagged jet (W) or at least one b-tagged jet (top)


- Treat the lepton as a jet (for MET calculations, Meff, jet cuts...)

Data-driven background estimation:

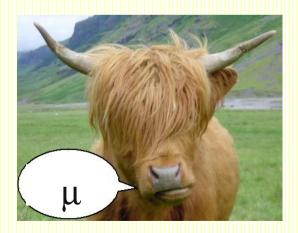

- Reverse and tighten the cut: $\Delta \phi$ (jet, E_T^{miss})_{min} < 0.2

- Transfer factor computed using pseudo-events obtained by smearing low- E_{τ}^{miss} events with the jet response function

95% CL limits on cross section · acceptance · efficiency: 22 fb, 25 fb, 429 fb, 27 fb and 17 fb

Exclusion plot

gluinos


- 3. Ratio of H₄, H₂ vevs tanβ
- 4. Trilinear coupling A.
- Higgs mass term sgn(µ)

The 1-lepton channel

Select events with jets, missing transverse momentum and exactly one lepton (e/μ)

arXiV:1109.6606 Submitted to PRD

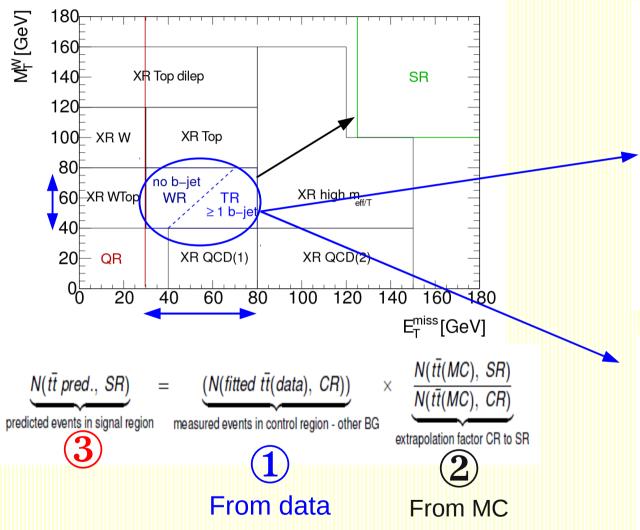
Defining the signal region

The isolated one-lepton requirement suppresses QCD multijet and allows a lepton-based trigger

- Exactly one lepton (e/μ) with pT>20 GeV

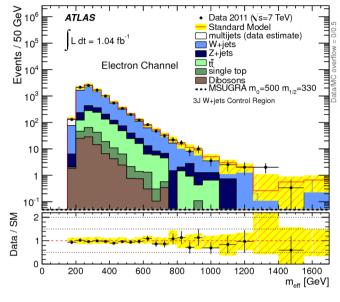
Event Selection in SRs	3JL	3JT	4JL	4JT
Leading jet p_{τ} [GeV]	60	80	60	60
Subsequent jets p _T [GeV]	25	25	25	40
M _T [GeV]	100	100	100	100
E _T ^{miss} [GeV]	125	240	140	200
E _T ^{miss} /M _{eff}	0.25	0.15	0.30	0.15
M _{eff} [GeV]	500	600	300	500

gluino/squark cascade decay with intermediate steps

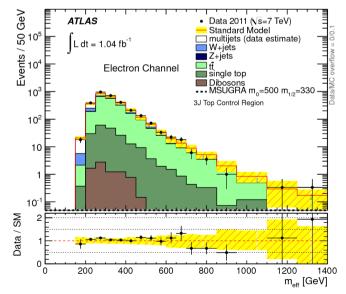

Suppresses W+jets and tt

Reduce the QCD BG further

Optimize for SUSY


 $\Delta \phi$ (jet, E_t^{miss}) >0.2

Main backgrounds: W+jets and tt



Method cross-checked with additional control regions

W control region: no b-jet

Top control region: \geq 1 b-jet

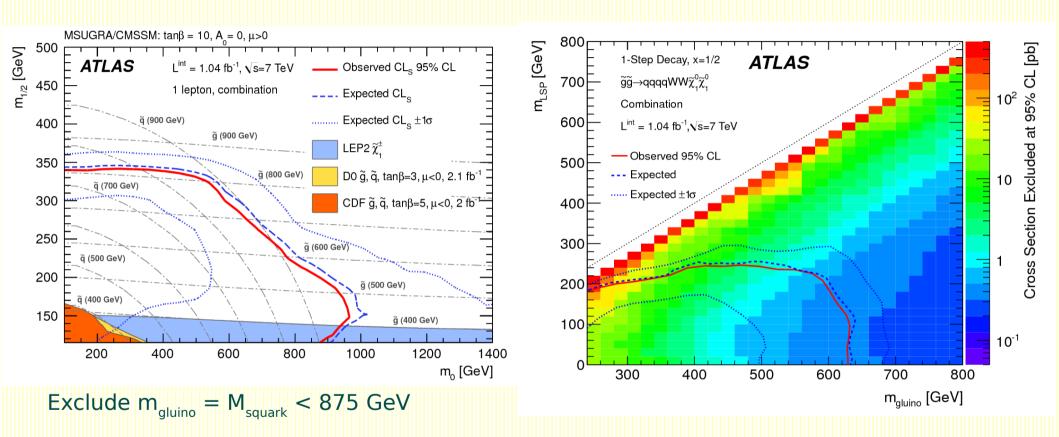
QCD BG

Evaluated using the 'matrix method' which plays on the difference in isolation between the leptons in QCD events with respect to signal leptons

- *Loose* control sample with isolation criteria relaxed with respect to the *tight* SUSY selections
- Define two categories: QCD leptons (Q) and non-QCD leptons (Q)

 \wedge

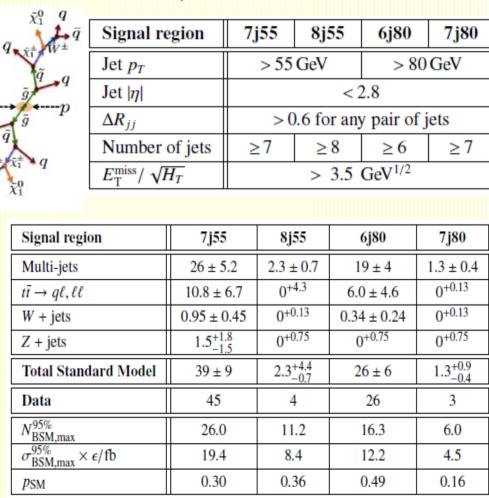
 $-\,\epsilon$ is the probability that a loose lepton is also tight

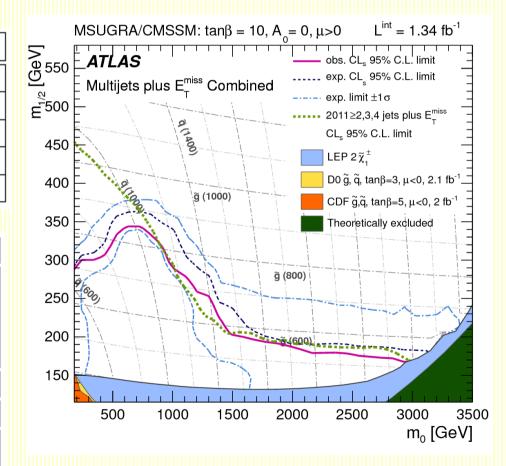

$$\begin{split} N_{tight}^{obs} &= N_{tight}^{\varphi} + N_{tight}^{Q} \\ N_{loose\ not\ tight}^{obs} &= \left(1/\epsilon_{\varphi} - 1\right) N_{tight}^{Q} + \left(1/\epsilon_{Q} - 1\right) N_{tight}^{Q} \end{split}$$

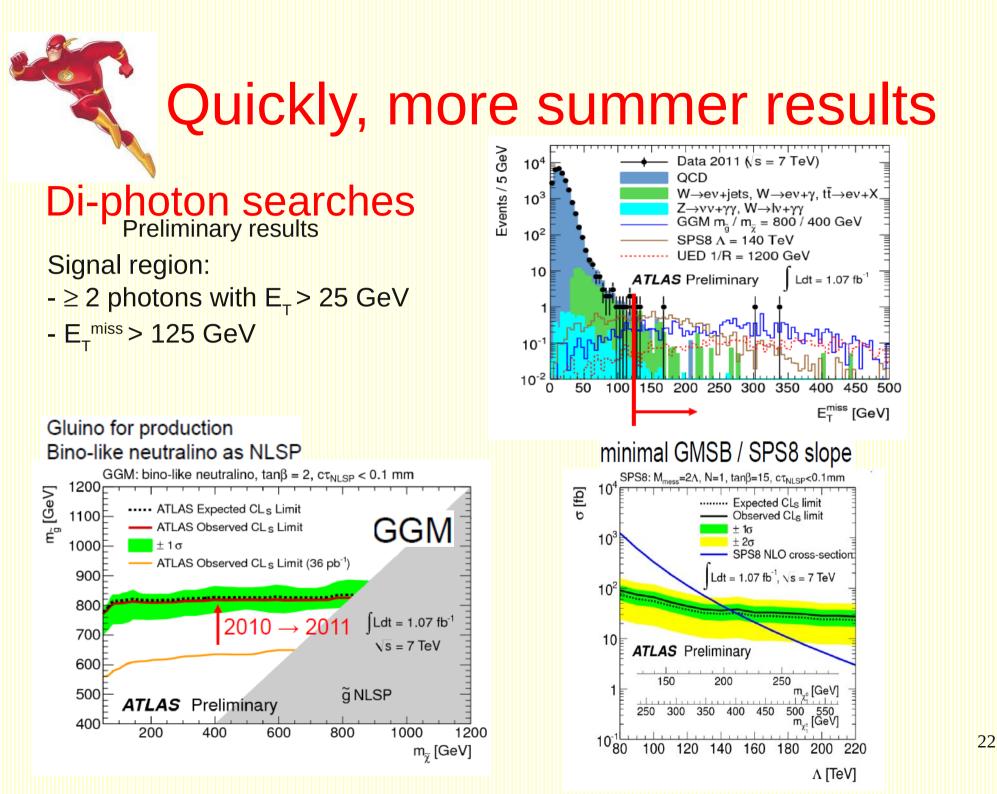
The quantities in red are measured: solve the equations and extract the number of QCD events

Results

<i>ATLAS</i> ● Data 2011 (√s=7 TeV)		·····	Electron char	nnel $\langle \epsilon \sigma \rangle$	$_{\rm obs}^{95}$ [fb]
$\int L dt = 1.04 \text{ fb}^{-1}$ $\int L dt = 1.04 \text{ fb}^{-1}$ $W + \text{jets}$ $Z + \text{jets}$	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $	Data 2011 (\s=7 TeV) Standard Model multijets (data estimate) W+jets Z+jets	3JL		50
Electron Channel		n Channel 🔤 tī ingle top	- 3JT		14
Dibosons MSUGRA m ₀ =500 m _{1/2} =330 4J Loose Signal Region before m ₁ cu		Dibosons MSUGRA m ₀ =500 m _{1/2} = 4J Loose Signal Region before m	330 Tay		33
			4JT		10
			401		10
			Muon channe	el $\langle \epsilon \sigma \rangle$	$^{95}_{\mathrm{obs}}$ [fb]
			3JL		36
	Data / SM		3JT		10
200 400 600 800 1000 1200 140		600 800 1000 1200 1	4JL		31
200 400 800 800 1000 1200 140 m _{eff} [G	ieV]	m _{eff}	[GeV] 4JT		9
			n .		·····
Electron channel	3JL Signal region	3JT Signal region	4JL Signal region	4JT Signal region	_
Electron channel Observed events	3JL Signal region 71	3JT Signal region 14	4JL Signal region 41	4JT Signal region 9	_
					-
Observed events	71	14		9 $4.5 \pm 2.6 (4.1)$ $3.5 \pm 2.2 (3.4)$	-
Observed events Fitted top events	71 $56 \pm 20 (51)$	14 7.6 ± 3.0 (6.8)		9 $4.5 \pm 2.6 (4.1)$	-
Observed events Fitted top events Fitted W/Z events		$ \begin{array}{r} 14 \\ 7.6 \pm 3.0 \ (6.8) \\ 10.5 \pm 6.5 \ (10.1) \end{array} $		9 $4.5 \pm 2.6 (4.1)$ $3.5 \pm 2.2 (3.4)$	- - -
Observed events Fitted top events Fitted W/Z events Fitted multijet events	71 $56 \pm 20 (51)$ $35 \pm 20 (34)$ $6.0^{+2.3}_{-1.4}$	14 $7.6 \pm 3.0 (6.8)$ $10.5 \pm 6.5 (10.1)$ $0.46^{+0.37}_{-0.22}$	$ \begin{array}{r} $	9 $4.5 \pm 2.6 (4.1)$ $3.5 \pm 2.2 (3.4)$ $0.00^{+0.02}_{-0.00}$	-
Observed events Fitted top events Fitted W/Z events Fitted multijet events Fitted sum of background events	71 $56 \pm 20 (51)$ $35 \pm 20 (34)$ $6.0^{+2.3}_{-1.4}$ 97 ± 30	$ \begin{array}{r} 14 \\ 7.6 \pm 3.0 \ (6.8) \\ 10.5 \pm 6.5 \ (10.1) \\ 0.46^{+0.37}_{-0.22} \\ 18.5 \pm 7.4 \\ \end{array} $	$ \begin{array}{r} $	9 $4.5 \pm 2.6 (4.1)$ $3.5 \pm 2.2 (3.4)$ $0.00^{+0.02}_{-0.00}$ 8.0 ± 3.7	-
Observed events Fitted top events Fitted W/Z events Fitted multijet events Fitted sum of background events Muon channel	71 $56 \pm 20 (51)$ $35 \pm 20 (34)$ $6.0^{+2.3}_{-1.4}$ 97 ± 30 3JL Signal region	14 $7.6 \pm 3.0 (6.8)$ $10.5 \pm 6.5 (10.1)$ $0.46^{+0.37}_{-0.22}$ 18.5 ± 7.4 $3 \text{JT Signal region}$	$ \begin{array}{c} 41 \\ 38 \pm 15 (34) \\ 9.5 \pm 7.5 (9.2) \\ 0.90^{+0.54}_{-0.37} \\ 48 \pm 18 \\ 4JL Signal region $	9 $4.5 \pm 2.6 (4.1)$ $3.5 \pm 2.2 (3.4)$ $0.00^{+0.02}_{-0.00}$ 8.0 ± 3.7 4JT Signal region	-
Observed events Fitted top events Fitted W/Z events Fitted multijet events Fitted sum of background events Muon channel Observed events	71 $56 \pm 20 (51)$ $35 \pm 20 (34)$ $6.0^{+2.3}_{-1.4}$ 97 ± 30 $3JL \text{ Signal region}$ 58 $47 \pm 16 (38)$ $16.6 \pm 9.4 (20.1)$	14 $7.6 \pm 3.0 (6.8)$ $10.5 \pm 6.5 (10.1)$ $0.46^{+0.37}_{-0.22}$ 18.5 ± 7.4 $3JT \text{ Signal region}$ 11 $8.9 \pm 3.2 (7.3)$ $5.0 \pm 3.2 (6.1)$	$ \begin{array}{r} 41 \\ 38 \pm 15 (34) \\ 9.5 \pm 7.5 (9.2) \\ 0.90^{+0.54}_{-0.37} \\ 48 \pm 18 \\ 4JL Signal region \\ 50 \\ 39 \pm 13 (36) \\ 14.1 \pm 8.5 (14.2) \\ $	9 $4.5 \pm 2.6 (4.1)$ $3.5 \pm 2.2 (3.4)$ $0.00^{+0.02}_{-0.00}$ 8.0 ± 3.7 4JT Signal region 7 $4.7 \pm 2.2 (4.3)$ $1.4 \pm 1.1 (1.4)$	-
Observed eventsFitted top eventsFitted W/Z eventsFitted multijet eventsFitted sum of background eventsMuon channelObserved eventsFitted top events	71 $56 \pm 20 (51)$ $35 \pm 20 (34)$ $6.0^{+2.3}_{-1.4}$ 97 ± 30 $3JL \text{ Signal region}$ 58 $47 \pm 16 (38)$	$ \begin{array}{r} 14 \\ 7.6 \pm 3.0 (6.8) \\ 10.5 \pm 6.5 (10.1) \\ 0.46^{+0.37}_{-0.22} \\ 18.5 \pm 7.4 \\ 3JT Signal region \\ 11 \\ 8.9 \pm 3.2 (7.3) \end{array} $	$ \begin{array}{r} 41 \\ 38 \pm 15 (34) \\ 9.5 \pm 7.5 (9.2) \\ 0.90^{+0.54}_{-0.37} \\ 48 \pm 18 \\ 4JL Signal region \\ 50 \\ 39 \pm 13 (36) \end{array} $	9 $4.5 \pm 2.6 (4.1)$ $3.5 \pm 2.2 (3.4)$ $0.00^{+0.02}_{-0.00}$ 8.0 ± 3.7 4JT Signal region 7 $4.7 \pm 2.2 (4.3)$	-

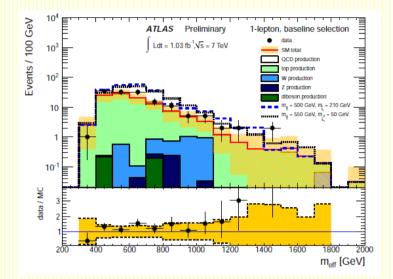

Exclusion plot



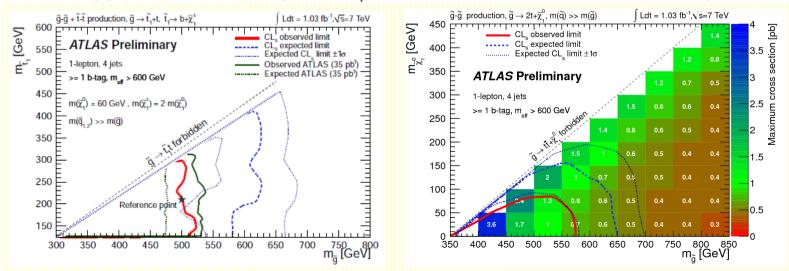

Limits also provided for simplified models: 1-step gluino (squark) decay and x= $\frac{1}{4}$, $\frac{1}{2}$, $\frac{3}{4}$ where x=(m_{x±}-m_{x0})/(m_{squark,gluino}-m_{x0}) Color coding: Cross section limit, Full line: Obs. Excl. limit for 100% BR to assumed decay mode ²⁰

Quickly, more summer results

Multijets ArXiV:1110.2299, submitted to JHEP On the arXiv since yesterday!



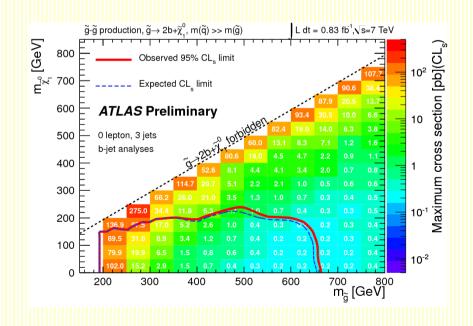
Quickly, more summer results

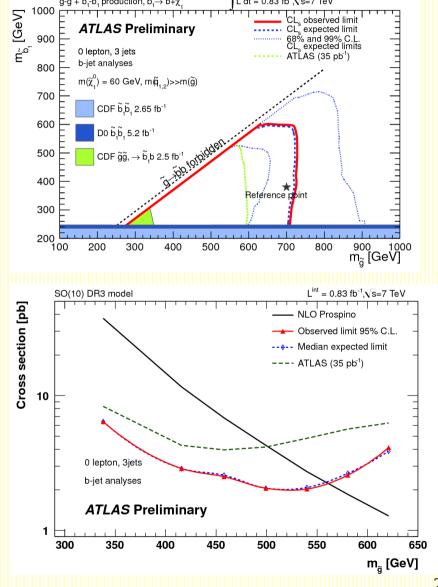

b-jet with 1 lepton ATLAS-CONF-2011-130

4 jets ($p_T > 50 \text{ GeV}$), $\geq 1 \text{ b-jet}$ ($p_T > 50 \text{ GeV}$) Exactly 1 lepton ($e \text{ or } \mu$) $E_T^{Miss} > 80 \text{ GeV}$ $m_T = \sqrt{2p_T^{lep}E_T^{Miss} - 2\vec{p}_T^{lep}E_T^{Miss}} > 100 \text{ GeV}$ $m_{Eff} = \sum_{i \leq 4} (p_T^{jet})_i + p_T^{lep} + E_T^{Miss} > 600 \text{ GeV}$

A.Tua

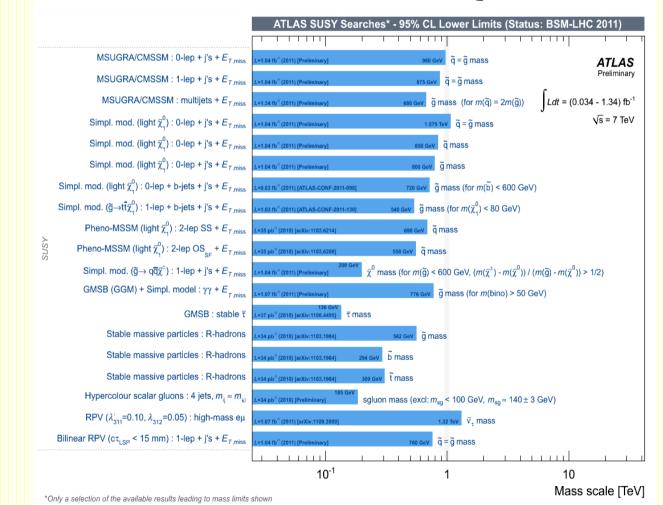
Scenario 1: $\tilde{g}\tilde{g}$ and $\tilde{t}_1\tilde{t}_1$ production with $\tilde{g} \to \tilde{t}_1t$ (BR=100%) and $\tilde{t}_1 \to b + \tilde{\chi}_1^{\pm}$ (BR=100%) Scenario 2: $\tilde{g}\tilde{g}$ production with $\tilde{g} \to t\bar{t}\tilde{\chi}_1^0$ (BR=100%) via off-shell stop decay.





b-jet with no lepton ATLAS-CONF-2011-098

lepton veto with $p_T > 20$ GeV (electron), 10 GeV (muon) let $p_T > 130$ 50 50 GeV (b to the second secon


Jet p+ 130,30,30 Gev	<u>></u> 1 b-jet, m _{eff} > 500 GeV
$E_{\rm T}^{\rm miss}$ > 130 GeV	≥1 <i>b</i> -jet, m _{eff} > 700 GeV
$\Delta \varphi_{\min}$ > 0.4 rad	≥2 <i>b</i> -jet, m _{eff} > 500 GeV
$E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}^{\mathrm{s}} > 0.25$	<u>></u> 2 <i>b</i> -jet, m _{eff} > 700 GeV

Summary and outlook

More results than I could show today!

Cover more topologies

Backup slides

Object identification

- Jets (anti-Kt, R=0.4): p₁>20 GeV, |η|<2.5
 - Reject events compatible with noise or cosmics
 - Remove if ∆R(jet,electron)<0.2</p>

 $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$

φ: azimuthal angle around the beam pipe η= -ln tan(θ/2) where θ is the polar angle

- Electrons: $p_T > 20$ GeV, $|\eta| < 2.47$, Sum p_T of tracks ($\Delta R < 0.2$) < $0.1p_T$
 - Remove if ∆R(jet,electron)<0.4</p>
- Muons: $p_1 > 20$ GeV, $|\eta| < 2.4$, Sum p_1 of tracks ($\Delta R < 0.2$) < 1.8 GeV
 - Remove if ∆R(jet,muon)<0.4</p>
- Missing transverse momentum (E_{τ}^{miss}):
 - sum over the transverse momentum of all jets (up to |η|<4.9), electrons, muons and all calorimeter clusters not associated to such objects

Limit setting

Combined fit to the number of events in the SR and CRs,

 $L(n|s,b,\theta) = P_s x P_w x P_T x C_{syst},$

n - observed events, s - signal counts to be tested, b - background counts,

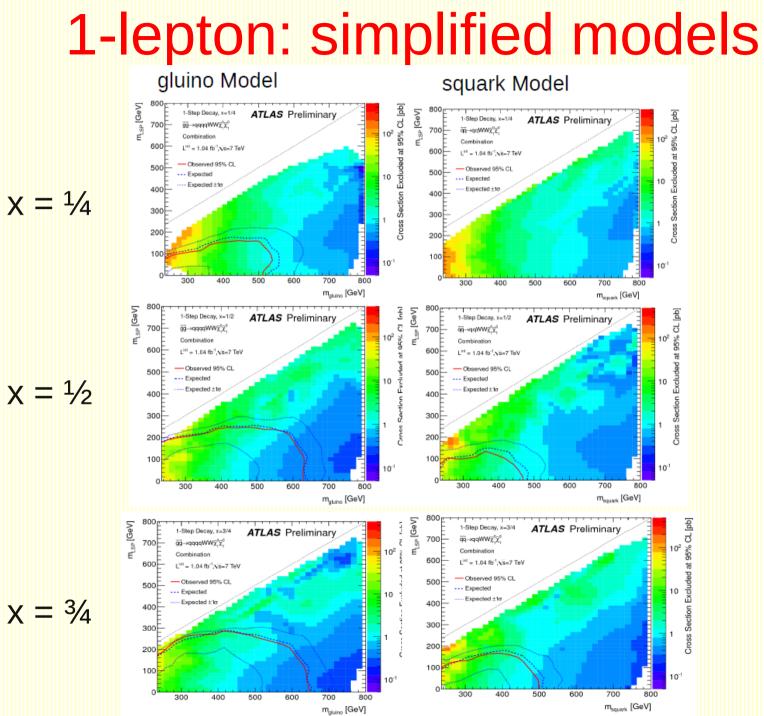
 θ - systematic uncertainties, treated as nuisance parameters with a Gaussian pdf.

P functions are Poisson probability distributions for event counts in SR, and in Top and W CRs.

Two fits performed:

Discovery fit, signal events in SR left free, no signal contamination in CR (conservative approach as in this way BG can be only overestimated in SR),

Exclusion fit, signal events fix to the expected values in SR and CRs,

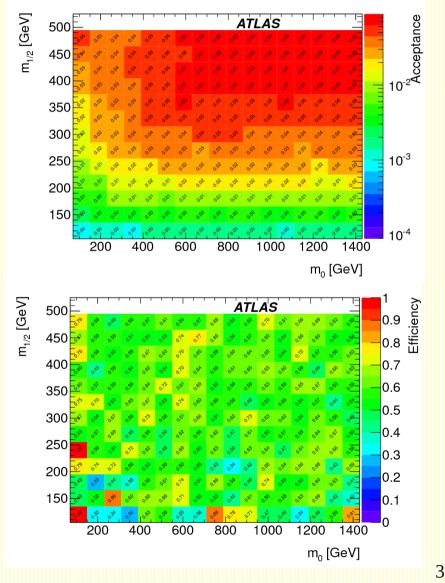

Model independent upper limits:

- Derived from the discovery fit,
- Profile likelihood ratio technics,
- » CL method.

From S. Pataraia

0-lepton control regions

		Signal / Control Region								
	CR1a	CR1b	CR2	CR3	CR4	SR				
Data	8	7	34	15	12	18				
Targeted background	Z/γ +jets	Z/γ +jets	QCD multi-jet	W+jets	$t\bar{t}$ + single top	_				
Transfer factor	0.374	0.812	0.063	0.196	0.372	_				
Fitted Z/γ +jets	8.3	5.8	0.7	0.5	0.0	3.3				
Fitted QCD multi-jet	_	_	29.8	0.8	0.6	2.1				
Fitted W+jets	_	_	0.5	10.0	0.4	2.1				
Fitted $t\bar{t}$ + single top	_	0.0	3.0	3.7	11.0	5.7				
Fitted total background	8.3	5.9	34.0	15.0	12.0	13.1				
Statistical uncertainty	±2.7	±1.2	±5.8	±3.9	±3.5	±1.9				
Systematic uncertainty	±0.6	±1.7	±0.1	±0.1	±0.2	±2.5				


 $X = \frac{3}{4}$

1-lepton: systematics

Electron channel	3 JL	3 JT	4JL	4 JT
Total statistical $(\sqrt{N_{obs}})$	± 8.4	± 3.7	± 6.4	± 3.0
Total background systematic	± 30.2	± 7.4	± 17.9	± 3.7
Jet/E_T^{miss} energy resolution	± 5.9	± 0.5	± 4.2	± 0.8
$\text{Jet}/E_{\text{T}}^{\text{miss}}$ energy scale	± 18.6	± 4.1	± 13.6	± 2.4
Lepton energy resolution	± 0.5	± 0.3	± 0.1	± 0.3
Lepton energy scale	± 1.1	± 0.3	± 0.4	± 0.5
b-tagging	± 1.2	± 0.2	± 0.7	± 0.1
MC stat. top	± 5.8	± 2.0	± 3.8	± 1.4
MC stat. W	± 4.4	± 2.3	± 2.2	± 1.3
Lepton misidentification rate	± 1.4	± 0.1	± 0.2	< 0.1
Real lepton rate	± 1.5	± 0.3	± 0.8	± 0.1
Top background modeling	± 15.9	± 2.1	± 9.8	± 1.2
W background modeling	± 19.0	± 5.6	± 5.1	± 1.9
Pile-up	± 5.1	± 1.0	± 2.5	± 0.4

How to use the data

- For each signal region and analysis channel, the efficiency x acceptance is provided
 - → validate your setup
 - \rightarrow interpret the data in your model

