

Search for dilepton heavy resonances in CMS

Philippe Miné, LLR On behalf of the CMS collaboration

Ph. Miné 11/10/2011

GDR Terascale@Marseille

1

LHC and CMS

Electron, muon, missing energy and jet identification

Z' and Randall-Sundrum search (1.1 fb⁻¹)

W' search (1.1 fb^{-1})

Excited electron search (36 pb⁻¹)

LHC

LHC (re)started in October 2009 (900 GeV, then 2.38 TeV)

Switched to 7 TeV on March 2010

Delivered 47.03 pb⁻¹ in 2010

Peak luminosity in 2011 3.3 nb⁻¹ s⁻¹

- Fine-grained crystal ECAL, $\Delta E/E < 0.5\%$ for E > 100 GeV
- Inner tracker in 3.8 T magnetic field + magnetic system outside solenoid, $\Delta p_T/p_T < 10\%$ at $p_T{\sim}1$ TeV

CMS

 Muon identification easier than electron, background smaller, but worst resolution for high mass resonances

Ph. Miné 11/10/2011

Both analyses use official CMS high energy electron and muon identification

Selection optimized for high efficiency at high energy Lowest E_T unprescaled (di)photon and muon trigger Offline E_T cut above trigger turn-on - electron: $E_T > 25$ GeV (2010), > 35 - 40 GeV (2011) - muon $E_T > 20$ GeV (2010), > 35 GeV (2011)

Energy scale correction applied for end-cap electrons (π^0 and Z)

Identification and trigger efficiencies measured with the tag and probe method

Scale factor to account for data – Monte Carlo (MC) efficiency difference applied

Ph. Miné 11/10/2011

A jet can fake an electron or a muon

Measure this contamination by the "fake rate " method:

- Measure the probability for a jet reconstructed as a lepton or photon, (with loosened cuts) to pass the rest of the selection
- Apply to get the mass spectrum from jets and compare to MC
- Estimate systematic uncertainty from different methods and jet thresholds

New gauge boson Z' or Randall-Rundrum graviton G_{KK} - new narrow high mass neutral resonance

Results normalized to the Z peak

- luminosity and other systematic effects cancel or are reduced

Dielectrons

- no charge requirement
- endcap-endcap pairs rejected (higher background)

Dimuons

- looser cuts (less background from jets)
- cosmic muons used to understand high \boldsymbol{p}_{T} muons
- reject background from cosmic muons

Ph. Miné 11/10/2011

Dominant: irreducible Drell-Yan (DY) production - estimate by MC and low mass control region

Next biggest (10% of DY above 120 GeV) t tbar and other sources of prompt leptons

- estimate by MC and checked by e μ method (next slide)

Dileptons from misidentified jets

- -"fake rate" method (slide 6)
- negligible for dimuons (1% of DY rate above 120 GeV)
- more important for dielectrons: about 5% of DY above 120 GeV

Cosmic rays muons

- using sidebands, estimate less than 0.1 event above 120 GeV

Ph. Miné 11/10/2011

From t tbar, one expects two e μ events for each e e or $\mu \mu$, scaled by different efficiencies

Scale factors are extracted from MC in mass bins

Currently a cross-check, although this BSM channel is interesting by itself

MC distributions normalized to NLO cross sections, then overall to the data at Z peak between 60-120 GeV

Uncertainties in table: statistical \oplus systematic.

Source	Number of events		
	(120 - 200) GeV	>200GeV	
CMS data	3410	809	
Total background	3375 ± 161	787 ± 67	
Z/γ^*	2992 ± 149	622 ± 62	
$t\bar{t}$ + other prompt leptons	275 ± 41	118 ± 17	
Multi-jet events	107 ± 43	46 ± 18	

DIMUON

MC distributions normalized to NLO cross sections, then overall to the data at Z peak between 60-120 GeV

Uncertainties in table: statistical \oplus systematic.

Source	Number of events		
	(120 - 200) GeV	>200 GeV	
CMS data	5216	1095	
Total background	5537 ± 250	1100 ± 48	
Z/γ^*	5131 ± 246	922 ± 44	
$t\bar{t}$ + other prompt leptons	404 ± 46	178 ± 20	
Multi-jet events	3 ± 3	0	

DISPLAYS

Highest mass events

dielectron

dimuon

Simple signal and background pdf, with shape parameters from MC

Use likelihood ratio to calculate significance S_L as a function of mass M

Correct for "Look Elsewhere Effect"

 $\mathcal{L} \sim \prod_{i} f_{\text{signal}} + f_{\text{background}}$ $f_{\text{signal}} \sim \text{Breit-Wigner}(m|M,\Gamma)$ $\otimes \text{Gaussian}(m|M,w)$ $f_{\text{background}} \sim \exp(-am)/m^{b}$

$$S_L = \sqrt{2\ln\frac{L_{S+B}^{\max}(f_s)}{L_B}}$$

	channel	most le	ocal Z (σ)	LEE corrected	1
		significant		Ζ(σ)	
		bump			
	ee	950 GeV	2.2	0.2	
	μμ	1080 GeV	1.7	0.3	
	ee+µµ combined	970 GeV	2.0	0.2	
Ph.	Miné 11/10/2011	GDR Terascale@	Marseille		13

Limits (95% CL) on ratio of cross sections Z'/Z using a Bayesian method

RooStats

			500	1000 1500	ĨM [
	channel	μμ	ee	µµ + ее	
	Z' _{SSM}	1780 GeV	1730 GeV	1940 GeV	
	Ζ'ψ	1440 GeV	1440 GeV	1620 GeV	
	<i>G</i> _{КК} , с=0.05	1240 GeV	1300 GeV	1450 GeV	
	<i>G</i> _{кк} , с=0.1	1640 GeV	1590 GeV	1780 GeV	
Ph. Miné 1	1/10/2011	GDR Terascale	@Marseille		14

Can discriminate Randall-Sundrum graviton from Z'

 $W' \rightarrow e \nu$

Measure transverse mass M_T

Selection on electron E_T , missing transverse energy and $\Delta \phi$

The main background is due to the W tail

Ph. Miné 11/10/2011

Search the production of an excited lepton (e^* , μ^*) in association with a SM lepton via a novel contact interaction (scale determined by parameter Λ)

The excited lepton decays via the electroweak interaction in a final state made of two high E_T leptons (e e or $\mu \mu$) and one high E_T photon

Two parameters in the theory: Λ and excited lepton mass M*

Event selection:

- -Two muons/electrons. One photon with $E_T > 20 \text{ GeV}$ in $|\eta| < 1.4$
- M(2 leptons) > 60 GeV to eliminate low mass Drell-Yan
- Lower mass cut (value depends on M* hypothesis) on the minimum lepton γ mass

Background $Z \gamma \rightarrow 1 + 1 + \gamma$ estimated from simulation Also $Z \rightarrow \tau \tau$, t tbar, W W, W Z, Z Z, W $\rightarrow 1 \nu$, $\gamma \gamma$, taken into account

Fake γ dominated by Z + jet : use photon fake rate Fake lepton dominated by W γ + jet : use lepton fake rate

Data (M*=200 G	eV)	0 (e*)	0 (mu*)
Expected Bkg	0.68	± 0.20	0.98 ± 0.22
Zγ	0.36	± 0.12	0.75 ± 0.15
Fake y	0.10	± 0.07	0.22 ± 0.14
Fake e (mu)	0.22	± 0.11	0.00 ± 0.06

No signal candidate observed in data

Perform a counting experiment and set 95% CL limits using the standard Bayesian method

Limits for Z', Randall-Sundrum graviton (1.1 fb⁻¹, e e + μ μ) SSM 1940 GeV G_{KK} c = 0.1 1780 GeV

Limit for Randall-Sundrum graviton (1.1 fb⁻¹, $\gamma \gamma$) G_{KK} c = 0.1 1730 GeV

Limit for W' (1.1 fb⁻¹, e e + $\mu \mu$) SM like couplings 2.27 GeV

Limits for excited leptons (36 pb⁻¹) with $\Lambda = 2$ TeV e* 760 GeV μ * 785 GeV

CMS recorded integrated luminosity 4.2 fb⁻¹, expected end 2011 5 fb⁻¹

Ph. Miné 11/10/2011

BACKUP

Ph. Miné 11/10/2011

- 3% (8%) on the acceptance times efficiency ratio evolution from low to high mass for dimuons (dielectrons), which includes PDF uncertainties (relevant to the acceptance) and the mass dependence of K-factors.
- For dimuons, sensitivity study to mass scale uncertainty (affecting only the region below 1250 GeV where there are events) showed negligible impact up to the maximum possible from alignment effects; for dielectrons, study at Z0 peak results in 1% for barrel and 3% for endcap.
- For dimuons, effect of possible x2-invariant "weak mode" in alignment, which corresponds to a muon tracking curvature bias, folded into estimate of Gaussian width for signal pdf.
- Shape systematics explored:

 include an extra background shape representing the ttbar component and varying its amplitude;

- trying a different functional form for the background pdf;

- and changing the low-mass cut-off point for the DY shape fit from 200 GeV down to 150 GeV, which changes the background shape parameters.

PHOTON ID

Photon ID Variable	Cut Threshold
$ \eta $	< 1.4442
E_T	> 20. GeV/c
H/E	< 0.05
Tracker Isolation	$< 2.0 + 0.001 * E_T$
ECAL Isolation	$< 4.2 + 0.006 * E_T$
HCAL Isolation	$< 2.2 + 0.0025 * E_T$
$\sigma_{i\eta i\eta}$	0.013
hasPixelSeed	No Requirement

Tight ID

- Only ECAL barrel photons
- Data/MC scale factor applied to account for the difference between data and MC: 0.967 ± 0.025

EXCITED LEPTON SYSTEMATICS

Source	Magnitude	Error on signal efficiency (%)	Error on bkgd. expectation (%)
Luminosity	11%		8.5
Photon Fake Rate	46%	\	10
Muon Fake Rate	50%	- \/	6.2
Ecal Energy Scale	1.3%	0.1	0.4
Photon ID	0.025	2.6	1.9
Muon ID	0.01	2.1	1.6
PDF and scales	· -	0.8	3

The decay width for other decay modes, taken into account: BR($l^* \rightarrow l + \gamma$) = 25% for low M* / Λ

Ph. Miné 11/10/2011

GDR Terascale@Marseille