

Higgs Boson Searches in ATLAS

Jana Schaarschmidt

Laboratoire de l'Accelerateur Lineaire Orsay (Universite de Paris-Sud XI)

GDR Terascale Marseille

13.10.2011

ATLAS Data Taking in 2011

Results presented based on EPS or Lepton-Photon Conference Papers and Letters (~1-2 /fb) @ 7 TeV

Data taken with 50 ns bunch spacing (very small fraction with 75 ns)

On average 6 interactions per bunch crossing

Between 96% and 100% of all channels operational (depending on detector subsystem)

Current status:

ATLAS data on tape: 4.2 /fb, Peak luminosity: 3.3 x 10³³ /cm²/s

New data with 12 interactions per crossing (half of the value expected at design lumi)

Collect ~5 /fb by end of 2011

Collect ~15-20 /fb by end of 2012

ATLAS Detector

Muon Spectrometer: $|\eta| < 2.7$ Air-core toroids and gas-based muon chambers $\sigma/p_T = 2\% @ 50$ GeV to 10% @ 1TeV (ID+MS)

EM Calorimeter: $|\eta| < 3.2$ Pb-LAr Accordion $\sigma/E=10\% \ VE\oplus 0.7\%$

Inner Detector: $|\eta| < 2.5$, B=2T, Si pixels/strips and Trans. Rad. Det.; $\sigma/pT =$ 0.05% pT (GeV) \oplus 1%

Hadronic calorimeter: $|\eta| < 1.7$ Fe/scintillator 1.3< $|\eta| < 4.9$ Cu/ W-LAr; σ /Ejet= 50%/VE \oplus 3%

SM Higgs Boson Production at the LHC

LHC cross-section working group arXiv:1101.0593v3

Associated production with W or Z

known at NNLO, ~5% theory uncertainty Leptonic signature useful for study of $H \rightarrow b\overline{b}$

known at NLO, ~5% theory uncertainty distinctive experimental signature becomes more important at high mass

Associated production with ttbar

known at NLO, ~5% theory uncertainty Provides little additional sensitivity

Theory uncertainty mostly from scale variations and PDFs

SM Higgs Boson Decay

 $\begin{array}{c} H \rightarrow \gamma \gamma \\ H \rightarrow bb \\ H \rightarrow \tau \tau \end{array} \end{array} Low mass (m_{_{H}} < 140 \text{ GeV}) \\ H \rightarrow \tau \tau \end{array}$ $\begin{array}{c} H \rightarrow WW \rightarrow IvIv \\ H \rightarrow ZZ \rightarrow 4I \end{array} \end{array} Intermediate, wide mass range (130 - 600 \text{ GeV}) \\ H \rightarrow ZZ \rightarrow IIvv \\ H \rightarrow ZZ \rightarrow IIqq \\ H \rightarrow WW \rightarrow Ivqq \end{array} \right\} Predominantly at high mass$

Events expected to be produced with L=1 fb⁻¹

m _H , GeV	ww→lvlv	ZZ→4I	γγ
120	127	1.5	43
150	390	4.6	16
300	89	3.8	0.04

(before selection)

5/32

High Mass Higgs Searches

тн = 200 GeV – 600 GeV

$H \rightarrow WW \rightarrow Ivqq$

240 GeV < mн < 600 GeV

arXiv:1109.3615v1

Full mass reconstruction possible, in contrary to IvIv channel.

Event selection:

- Isolated e or μ with pT > 30 GeV
- Veto events with 2^{nd} lepton (to ensure independence from $\text{ZZ} \rightarrow \text{II}\nu\nu)$
- Exactly 2 jets OR 3 jets with pT > 25 GeV (0 and 1 jet analyses)
- MET > 30 GeV
- |m_{ii} -m_w | < 10 GeV
- Reject events with b-jets (reduces top)

240 GeV < mн < 600 GeV

Systematic uncertainties:

Lepton and jet reconstruction, dominant are jet energy scale and resolution.

No counting experiment. Limits obtained by fit with double exponential.

$H \rightarrow \ ZZ \rightarrow IIqq$

200 GeV < mн < 600 GeV

arXiv:1108.5064v1

Event selection:

- Two same flavor leptons (e/ μ)
- |m_µ-m_z| < 15 GeV
- Two jets, pT > 25 GeV in $|\eta|$ < 2.5
- MET < 50 GeV

Special high mass cuts: Jet pT > 45 GeV, $\Delta \Phi(I,I) < 1.6$, $\Delta \Phi(j,j) < 1.6$

Background control:

- Z+jets: shape from MC, scaling from m_{ii} sidebands
- Top: shape from MC, norm. from m sidebands
- Dibosons from MC
- QCD from loose data sample

$H \rightarrow ~ZZ \rightarrow IIqq$

200 GeV < mн < 600 GeV

Dominant systematic uncertainties:

Jet energy scale b-taggging efficiency in tagged analysis

$H \to ~ZZ \to II\nu\nu$

200 GeV < mн < 600 GeV

Strong at high mass, good background separation.

arXiv: 1109.3357v1

Event selection:

- Pair of same flavor OS leptons
- Veto events with b-tags
- |m_z-m_µ| < 15 GeV
- $\Delta \Phi(MET, pT \text{ leading jet}) < 0.3$

Low mass analysis (mH < 280 GeV):

- MET > 66 GeV
- 1 < ∆Φ(I,I) < 2.64

High mass analysis (mн > 280 GeV):

- MET > 82 GeV
- $\Delta \Phi(I,I) < 2.25$ (larger boost)
- ΔΦ(MET,p_T["]) < 1

Background control:

- ZZ continuum from MC (~10% uncertainty)
- Z+jets from MC, cross checked with looser selection
- \bullet Top: from MC, but cross checked with two control samples (e μ and b-tagged sample)
- W+jets: from same sign lepton pairs
- QCD: From loose selection. Negligible contribution.

$H \to ~ZZ \to II\nu\nu$

Dominant systematic uncertainties:

MET and b-tagging efficiency

Data	Total BG	mH=400 GeV
47	55.3±2.0±7.8	10.0±0.2±1.7

Signal includes contributions from $ZZ \rightarrow 4I$ and $WW \rightarrow IvIv$. Independent channel due to selection criteria

1.04 /fb

Intermediate and Wide Mass Higgs Searches

тн = 110 GeV – 600 GeV

$H \rightarrow ZZ^{(*)} \rightarrow 4I$

110 GeV < mн < 600 GeV

2.1 /fb

arXiv:1109.5945v1

Clean but very rare channel.

Event selection:

- Two same-flavor OS lepton pairs
- Track and calo-based lepton isolation
- |m₁₂-m_z| < 15 GeV
- $m_{_{41}}$ < $m_{_{34}}$ < 115 GeV, mass dependent low threshold

Mass resolution FWHM:

- mн=130 GeV: 4.5 6.5 GeV
- mн=400 GeV: 35 GeV

At low mass detector resolution dominant At high mass natural width relevant

Background control:

- Dominant ZZ(*) from MC (~15% uncertainty)
- \bullet ttbar: MC shape and $e\mu$ data control sample
- Z+jets: Yield extrapolated from control region

$H \rightarrow ZZ^{(*)} \rightarrow 4I$

110 GeV < mн < 600 GeV 2.1 /fb

Results:		Data	Total BG	тн=200 GeV
	4e	5	3.7±0.5	1.0±0.1
	4μ	11	7.7±1.2	2.3±0.3
	2e2µ	8	9.8±1.4	2.6±0.4

Systematic uncertainties:

Lepton-related uncertainties determined from W, Z and J/ Ψ :

- \rightarrow Impact of μ efficiency uncertainty:
 - 1.7% (4µ), 1.2 % (2e2µ)
- \rightarrow Impact of e efficiency uncertainty: 3%-15% (4e), 2%-6% (2e2 $\mu)$

$\mathsf{H} \to \mathsf{W} \mathsf{W}^{(*)} \to \mathsf{Iv} \mathsf{v}$

ATL-CONF-2011-134

Most sensitive channel in intermediate mass range.

Event Selection:

- Exactly two isolated leptons with pT > 15 GeV
- ee/μμ: |m_µ-m_z| >15 GeV, m_µ> 15 GeV, MET_{rel} > 40 GeV eμ: m_µ> 10 GeV, MET_{rel} > 25 GeV

$$E_{\rm T,rel}^{\rm miss} = \begin{cases} E_{\rm T}^{\rm miss} & \text{if } \Delta \phi \ge \pi/2\\ E_{\rm T}^{\rm miss} \cdot \sin \Delta \phi & \text{if } \Delta \phi < \pi/2 \end{cases}$$

 $\Delta \Phi = \min(\Delta \Phi(MET, lep), \Delta \Phi(MET, jet))$

Further cuts on p_{T}^{\parallel} , m_{\parallel} , $\Delta \phi_{\parallel}$, m_{T} Optimized for three different mass ranges.

H+0jet selection:

Exactly zero jets with pT > 25 GeV

 \rightarrow WW background dominant

H+1jet selection:

- Exactly one jet but no b-tag
- Z $\rightarrow \tau \tau$ veto by $|m_{\tau \tau} m_{Z}| > 25 \text{ GeV}$
- Total pT < 30 GeV (MET + leptons +jet) (rejects top)
- \rightarrow Large tī background

110 GeV < mн < 300 GeV 1.7 /fb

Kinematic distributions in µµ channel:

(no shape uncertainties shown)

Background control:

- WW normalization from control region
- Z+jets rescaled with mismodelling factor obtained from control region
- Top normalization from control region
- W+jets fake factor from control region

Systematic uncertainties:

- e/μ E scale, resolution, efficiency 0.3-5%
- Jet energy resolution 14%, JES 3-9 %
- B-tagging: 5-15 %, Mistagging: 21 %
- MET: ~13 %, Lumi 3.7%

$\mathsf{H} \to \mathsf{W} \mathsf{W}^{(^*)} \to \mathsf{Iv} \mathsf{Iv}$

110 GeV < mн < 300 GeV 1.7 /fb

$H \rightarrow WW^{(*)} \rightarrow IvIv$

Low Mass Higgs Searches

Fit to EW precision data suggests a light Higgs boson:

45

$H \rightarrow \tau \tau \rightarrow \tau$ Tlep τ lep / τ lep τ had

$\tau\tau \rightarrow II + 4\nu$

- Two isolated OS leptons
- Require a high pT jet to boost the system
- Cuts on $\Delta \Phi(II)$, m $\tau \tau j$, m
- Collinear approximation to reconstruct $\tau\tau$ mass:

 $m_{\tau\tau} = \frac{m_{vis}}{\sqrt{x_1 x_2}}$ x is momentum fraction of visible decay products

• Mass resolution m_{\perp} =120 GeV ~ 24 GeV

(bit less for VBF)

 $\tau\tau \rightarrow I\tau_{_{had}} + 3\nu$

- More background (from fake τ): W, QCD
- τ pT: 20 GeV, neural net based τ ID
- MET > 20 GeV, mT < 30 GeV
- Stronger at higher masses

Missing Mass Calculator arXiv: 0901.0512

ATLAS Preliminary

- Irreducible $Z \rightarrow \tau \tau$ shape from τ embedding into $Z \rightarrow \mu \mu$ data events arXiv: 1107.5003v1
- Fake lepton backgrounds from control sample

Dilepton channel:

Data	Total BG	тн=120 GeV
46	47.4±4.9	0.8

(ggF and VBF)

1.06 /fb

Dominant systematic uncertainties:

Jet and τ energy scale, τ ID and MET

Results of MSSM h/A/H $\rightarrow \tau \tau$ in backup slides.

Future: Dedicated VBF analysis.

$H \rightarrow b\overline{b}$

ATL-CONF-2011-103

W/Z associated. Largest branching fraction at low mass, but huge backgrounds.

Event Selection:

- Single lepton triggers: µ18, e20
- At least two jets with pT > 25 GeV within $|\eta| < 2.5$, two highes pT jets b-tagged

$\mathbf{ZH} \ \rightarrow \mathbf{IIbb}$

Entries / 10 GeV

- Two isolated leptons (e/ μ), pT>20 GeV
- MET < 50 GeV (rejects top)
- |m_µ-m_z| < 15 GeV

$WH \to I\nu bb$

- One isolated lepton (e/ μ) pT > 25 GeV
- MET > 25 GeV
- mT > 40 GeV $m_T = \sqrt{2p_T^\ell p_T^\nu (1 \cos(\phi^\ell \phi^\nu))}$

23/32

$H \rightarrow b\overline{b}$

Background Control:

All background checked on data using control samples.

Typically: Shape from MC, normalization from a sideband. $W_{b\bar{b}}$ and QCD shape from data.

Results:

110 GeV < mн < 150 GeV 1.08 /fb arXiv:1108.5895v1 $\gamma - \pi^0$ separation

 Photons seeded by clusters in elmag. calorimeter (E_{τ} >2.5 GeV)

 $H \rightarrow \gamma \gamma$

- Unconverted, single and double track conversions
- Fine granularity of 1st (strip) sampling allows rejection of neutral mesons (π^0)
- E resolution:

```
\sigma(E)/E = 10\%/\sqrt{E \oplus 0.3 \text{GeV}/E \oplus (1.1-1.8)\%}
with E calibration correction from Z \rightarrow ee data)
```

Inclusive event selection:

- Trigger: Two γ with p₁>20 GeV
- p_{τ} > 40 / 25 GeV, Tight identification cuts
- Calo-based isolation < 5 GeV (corrected for Pile-Up and out-of-cone leakages)

Data	*mн=120 GeV		
5 063	17.6		

*sum of ggH, VBF, Z/WH, ttH

$\mathsf{H}\to\gamma\gamma$

110 GeV < mн < 150 GeV

1.08 /fb

Unconverted photons in Barrel compared with $\gamma\gamma$ MC:

Mass resolution: 1.7 GeV (FWHM 4.15 GeV)

Could improve by 15% with nominal constant term of 0.8%

Categorized analysis:

Divide sample into 5 categories: Conversion status ⊕ position in the calorimeter exploiting different S/B ratios and resolutions to increase sensitivity.

Calorimeter pointing:

Combine front and middle layer of ECAL to deduce photon direction and z coordinate, combined with tracker if photon is converted

 $\rightarrow \Delta z = 1.5$ cm (unconverted, Barrel)

$H \rightarrow \gamma \gamma$

Background processes:

- Irreducible diphotons, gamma-jet and jet-jet
- Electron induced ($Z \rightarrow ee$)

Data sample decomposed using 2D sidebands (identification vs. isolation), cross checked with 2D fit of isolation templates:

Systematic uncertainties:

Signal yield 12 % (γ efficiency, Lumi, $p_{T}^{\gamma\gamma}$) Signal resolution: 14 % (E calibration, Δz) BG shape model: ±(3 - 5) events

Expected exclusion: 4 x SM

observed: 2-6 x SM

Future: Improve performance, use jet categories and exclusive analyses

Summary SM Higgs Searches

ATL-CONF-2011-135

SM Higgs Combination

ATL-CONF-2011-135

Expected exclusion: 131–450 GeV Observed exclusion: 146 – 232 GeV, 256 – 282 GeV, 296 – 466 GeV

Consistency with Background-Only Hypothesis

Dashed line gives location of the median p-value in case a Higgs signal would be present Solid line is observed combined p-value.

Small p-value means little agreement with background-only hypothesis.

Consistency with Background-Only Hypothesis (Low Mass)

Dashed line gives location of the median p-value in case a Higgs signal would be present Solid line is observed combined p-value.

Small p-value means little agreement with background-only hypothesis.

- No significant excess seen
- ATLAS excludes SM Higgs with at least 95% CL. for

146 GeV – 232 GeV 256 GeV – 282 GeV 296 GeV – 466 GeV

• ATLAS and CMS combination at m_H=115 GeV:

Possible exclusion at Moriond 2012 (~5 /fb)

With ~20 /fb by end of 2012 4σ observation possible

Additional Slides

MSSM h/A/H $\rightarrow \tau \tau$

ATL-CONF-2011-132

In SUSY coupling to vector bosons supressed/absent. Enhanced coupling to down-type fermions, $\sim \tan\beta$

Considered final states: $e\mu$, $e\tau_{h}$, $\mu\tau_{h}$, $\tau_{h}\tau_{h}$

Leplep channel:

- Lepton pT cut trigger dependent: e (μ): 22 (10) GeV or 15 (20) GeV
- Sum lepton pT + MET < 120 GeV
- ΔΦ(eµ) > 2.0

Fully hadronic channel:

Lephad channel

- Two-τ trigger
- Cut based τ ID
 - τ pT > 45 (30) GeV

500

- MET > 25 GeV
- Veto events with high-pT leptons
- Lepton pT: e (μ) 25 (20) GeV when more leptons in the event: e (μ) 15 (10) GeV
- τ pT: 20 GeV, τ ID NN based
- MET > 20 GeV, mT < 30 GeV

Missing Mass Calculator arXiv: 0901.0512

MSSM h/A/H $\rightarrow \tau \tau$

Background control:

- W+jets and QCD from SS mass shape in lephad channel
- QCD in fully hadronic channel from ABCD method (τ ID vs. charge product)

Systematic uncertainties:

- Dominant $\tau_{_{h}}$ ID efficiency & fake rate uncertainty: 10 %
- \bullet Also important: τ and jet energy scales and resolutions

MSSM h/A/H $\rightarrow \tau \tau$

100 GeV < ma < 600 GeV

Results:

*ggF and b-associated production

	Data	Total BG	Signal* tanβ=20
leplep	2 472	$2\;600\pm200$	тн=120 GeV:155±6
lephad	1 913	$2\ 100\pm400$	тн=120 GeV:116±9
hadhad	245	233 +44 -28	тн=200 GeV:19±1

Search channel: $t\bar{t} \rightarrow H^+b + W^-b \rightarrow \tau vb + qq'b$

ATLAS-CONF-2011-138

Event selection:

- MET + τ trigger
- MET > 50 GeV
- Hadronic t with pT > 35 GeV
- At least one b-tagged jet

MSSM $H^+ \rightarrow \tau v$

- Two additional jets + b-jet
- Final discriminant: mT

Data	Total BG	mн⁺=130 GeV, BR (t→bH⁺)=0.1
43	37±7	70

- Jet and τ related systematics dominant
- True τ background via τ embedding into μ +jets data sample

$H^{\pm\!\pm\!}\!\!\to\mu\mu$

100 GeV < mн[±] < 400 GeV 1.6 /fb

ATL-CONF-2011-127

- Relevant models eg. Little Higgs, Higgs triplets
- Select events with 2 high p⊤ same sign muons
- Production in DY process $q\overline{q} \rightarrow Z/\gamma^* \rightarrow H^{**}H^{--}$
- If BR=1, left-handed $H^{\pm\pm}$ excluded for mH < 375 GeV, right-handed $H^{\pm\pm}$ excluded for mH < 295 GeV

4th Generation

• Heavy 4th generation: m = 600 GeV

• Exclusion: 120 GeV – 600 GeV

$H \rightarrow \gamma \gamma$

$H \rightarrow W W \rightarrow Ivqq$

⁻ 41

CMS Higgs Results Summary

CMS Higgs Results Combination

Summary SM Higgs Searches

Chai	nnel	btag (veto)	Jets	MET (GeV)	Shape	Mass Range (GeV/c²)	Main backgrounds
γ	γ				M _{γγ}	110-150	γγ <mark>(</mark> from sidebands)
τ	τ	1	~		Μ _{ττ}	110-140	Z from data driven methods
w	Ή	1	2		M _{bb}	110-130	Top (3j - high M _{bb}) and W+jets (low M _{bb})
Z	Н	1	2		M _{bb}	110-130	Z+jets (low M _{bb})
	0-jet		0	>30		110-600	WW (control region M _{II})
WW (byby)	1-jet	veto	1	>30		110-600	Top (from reverse btag) and WW (M _{II} CR)
()	VBF*	veto	2	>30		110-600	Top from CS
WW**	0-jet		0	>30	M _{ww}	200-600	W+jets (sidebands)
(lvqq)	1-jet	veto	1	>30	M _{ww}	200-600	W+jets (sidebands)
ZZ (()	IP			M _{4I}	110-600	ZZ (from MC), Z+jets and top (CR)
ZZ (II	ττ)*				$M_{2l2\tau}$	200-600	ZZ (From Z - data)
ZZ (I	lνν)	1		>30	M _T	200-600	VV(from MC) and top (MC and checks)
ZZ (I	lqq)	1	2	<50	M _{llqq}	200-600	Z+jets (from MC) and top (from MC)

* CMS only / ** ATLAS only