4th generation at LHC

Clément Helsens IFAE Barcelona On behalf of the ATLAS and CMS Collaborations

> GDR Terascale October 11 2011 CPPM Marseille

10/11/2011

New heavy quarks

- Over the past decades, Standard Model (SM) has been very successful in describing all the experimental measurements using "only" three generations of quarks and lepton family
- Many BSM models predict new heavy quarks: Extra-dimension, little higgs, new SM like generations, GUTs, etc...
- → Can be vector like, can have flavor changing neutral current decays, etc...
- Initial searches at the LHC focus mainly on pair produced heavy quarks, decaying mostly like the top-quark
- <u>Benchmark model:</u>
 - Simplest extension of the SM: 4th sequential generation of fermions

Top Quark Pair Production

- $\sigma_{_{\rm tt}}$ (7 Tev LHC) ~ 165 pb (172.5 GeV, Moch, Uwer, Langenfeld (Phys. Rev. D78 (2008) 034003, arXiv:0907.2527) = 20 $\sigma_{_{\rm tt}}$ (Tevatron)
- 4fb⁻¹ @ 7 TeV already on tape
 → 660K ttbar pairs (~8 times Tevatron statistics)

Top Quark Event Topology

- Almost all top quarks decay to $t \rightarrow Wb$
- Final states classified by W decay modes W \rightarrow qq (2/3) or W \rightarrow lv (1/3)
 - All hadronic (no W \rightarrow lv) \rightarrow 4/9 (~45%)
 - Semi-leptonic $(1 \text{ W} \rightarrow l\nu) \rightarrow 4/9$ (only electron/muon considered $\rightarrow \sim 31\%$)
 - Di-leptonic $(2 \text{ W} \rightarrow l\nu) \rightarrow 1/9$ (only electron /muon considered $\rightarrow \sim 5\%$)

<u></u> ĈS	n+jets	+jets	jets	all-hadronic		
ūd	electro	muon	tau+			
ч <mark>ч</mark>	eτ	μτ	ξĩ	tau+jets		
' 1 .	eμ	, QLO	μτ	muon+jets		
ω'	<u>е</u> б	eμ	eτ	electron+jets		
Necal	e+	μ^{+}	τ^{+}	иd	cs	

- The top-quark provides a virtual lab to search for new physics
 - Many tops have already been produced at LHC!!
 - Various properties of the top-quark have been measured
 - This helps us to provides procedures/tools to separate SM backgrounds from new physics

Search for heavy quarks

- As with top-quark production, the heavy quark pair production is larger than the single production (exception for VLQ, quarks with anomalous couplings, large mixing with other generations
- Commonly heavy quarks search channels for 4^{th} generation $\rightarrow t'$, b'
 - Up type quark t': t't' \rightarrow WbWb (EW precision data favors mt'-mb'<mW)
 - Down type quark b': b'b' \rightarrow tWtW \rightarrow WbW WbW
- Also searches for objects that decays into top pairs + X
 - $T \rightarrow t + DM$
 - $T \rightarrow tH, tZ$ (no presented here)

10/11/2011

Clément Helsens, IFAE Barcelona

Monte-Carlos

- Signal generated with Pythia or MadGraph (ATLAS/CMS)
- Signal cross-sections from HATHOR (NNLO approximation)
- Backgrounds:
 - ATLAS: MC@NLO for ttbar, single top, Alpgen for W/Z+jets, Herwig for dibosons
 - CMS: Pyhtia, MadGraph
 - For fake leptons: Obtained via data-driven techniques → loosening the lepton ID criteria and extracting tight vs loose efficiencies in control samples

Results Covered In This Talk

- ATLAS results \rightarrow https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults
 - Search for Up-Type Fourth Generation Quarks in the Diepton plus Jets Channel (37pb-1, ATLAS-CONF-2011-022)
 - Inclusive search for same-sign dilepton signatures in pp collisions at \sqrt{s} = 7 TeV with the ATLAS detector (35pb-1, arXiv:1108.0366)
 - Search for New Phenomena in ttbar Events With Large Missing Transverse Momentum (1.04fb-1, arXiv:1109.4725)
 - Search for Up-Type Fourth Generation Quarks in the Lepton plus Jets Channel (1.04fb-1) (not yet public, under approval process, not showing details)
- CMS results \rightarrow https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults
 - Search for a Heavy Bottom-like Quark (1.14fb-1, CMS PAS EXO-11-036)
 - Search for a Heavy Top-like Quark in the Dilepton Final state (1.14fb-1, PAS-EXO-11-050)
 - Search for pair production of a fourth-generation t' quark in the lepton-plus-jets channel (0.82-0.57 fb-1, PAS-EXO-11-051)
 - Inclusive search for a fourth generation of quarks (1.1 fb-1, PAS-EXO-11-054)

CMS - Search for b' 1/3

CMS

PAS-EXO-11-036

• $\underline{b'b'} \rightarrow tWtW \rightarrow WbW WbW$

- 2 same sign or three isolated leptons (e/mu) in the final state \rightarrow 7.3% of the decay
- Dilepton triggers \rightarrow 92% (mu/mu), 96% (e/mu), >99% (e/e)
- <u>Selection criteria:</u>
 - Muons: pT>20GeV, $|\eta| < 2.4$; isolation Σ ET(Δ R<0.3) pileup < 0.15*pT
 - Electron: pT>20GeV, $|\eta| < 2.4 \notin 1.44 < |\eta| < 1.57$; isolation $\Sigma ET(\Delta R < 0.3)$ pileup < 0.06*pT
 - Select event with 2 opposite sign leptons or three leptons (2 of them opposite charge)
 - For same flavor leptons \rightarrow Z mass veto: |mll mZ| > 10 GeV
 - − B-tagging based on IP significance → 50% b-tag efficiency; 1% mistag rate; nbjet ≥1
 - Jets clustered using PF particles and Anti-kt with a cone of 0.5; pt > 25GeV; $|\eta| < 2.4$
 - Same sign lepton \rightarrow njets \geq 4; 3 lepton channel njets \geq 2
 - ST = scalar sum of jet pT, lepton pT, MET, should be > 500GeV

• <u>Signal selection efficiency:</u>

$M_{\mathrm{b}'}$	cross section	same-sign dilepton		trilepton	
$[\text{GeV}/c^2]$	[pb]	efficiency [%]	yield	efficiency [%]	yield
350	3.20	1.16 ± 0.15	42	0.33 ± 0.06	12
400	1.41	1.36 ± 0.17	22	0.42 ± 0.06	6.7
450	0.662	1.51 ± 0.18	11	0.45 ± 0.07	3.4
500	0.330	1.57 ± 0.19	5.9	0.48 ± 0.07	1.8
550	0.171	1.80 ± 0.22	3.5	0.57 ± 0.08	1.1

10/11/2011

$\rm CMS-Search$ for b' 2/3

CMS 2011 Preliminary 1.14 fb⁻¹

PAS-EXO-11-036

Backgrounds:

- Same sign 2 leptons → main contribution is from ttbar
- 3 leptons; main contribution tt+W(Z)
- Good modeling of the data, no sign of any excess → set limits
- Expected/observed yields:

10/11/2011

Total BG in signal regio		Data
2SS	4.4 +/- 1.4	5
3 lepton	0.16 +/- 0.09	1

Clément Helsens, IFAE Barcelona

10/31

CMS - Search for b' 3/3

PAS-EXO-11-036

- Limits extracted using a cut and count method
- Bayesian method with log-normal prior for integration over the nuisance parameters
- Observed limit: m(b') > 495GeV @ 95%CL

	Total BG in signal region	Data
2SS	4.4 +/- 1.4	5
3 lepton	0.16 +/- 0.09	1

	same-sign dilepton		trilepto	on
	$\Delta\epsilon/\epsilon$	ΔB	$\Delta\epsilon/\epsilon$	ΔB
Accuracy of control-sample method	-	1.02	-	-
Control sample statistics	-	0.49	-	-
Integrated Luminosity	4.5%	0.03	4.5%	0.007
Background normalization	-	0.39	-	0.059
Lepton selection	4.4 - 4.5%	0.03	6.2 – 6.5%	0.010
b-tagging	10%	0.07	10%	0.016
Pile-up events	2.3%	0.35	3.4%	0.053
Jet energy scale	1.4 - 3.2%	0.12	0.4 - 4.3%	0.008
Jet energy resolution	0.8 - 2.4%	0.51	0.6 – 3.5%	0.010
Missing energy resolution	0.1 – 3.1%	0.10	0.6 – 6.0%	0.014
Trigger	2.3%	0.07	2.3%	0.004
PDF	0.3 – 0.7%	0.06	0.7 – 1.8%	0.005
Simulated sample statistics	3.1 – 4.0%	0.05	5.6 - 7.4%	0.025
Total	12 – 13%	1.4	14 – 17%	0.09

10/11/2011

Clément Helsens, IFAE Barcelona

11/31

ATLAS – Same sign dileptons 1/3

arXiv:1108.0366

- This analysis present the search for two same sign leptons ($ee/e\mu/\mu\mu$)
- Inclusive search for new physics \rightarrow limits on heavy Majorana neutrinos, UED, b'

• <u>Selection:</u>

- 2 same sign leptons with tight identification criteria
- Single lepton trigger
- Lepton pT > 20GeV; muon $|\eta| < 2.5$; electron $|\eta| < 2.47 \notin 1.37 < |\eta| < 1.52$
- Lepton isolation: $\Sigma ET(\Delta R < 0.2) < 0.15*pT$
- Jets: Anti-kt 0.4, pt> 30GeV, $|\eta| < 2.5$
- ETMiss > 30 GeV

ATLAS – Same sign dileptons 2/3

arXiv:1108.0366

- <u>Background sources in the SM:</u>
 - QCD \rightarrow jets faking/creating isolated leptons
 - Charge Mis-Identification

10/11/2011

- Diboson \rightarrow irreducible background
- <u>Data/Monte Carlos modeling is shown in the njet distribution:</u>
 - This is the variable used for limit setting

ATLAS – Same sign dileptons 3/3

arXiv:1108.0366

- A 3 bin template is used for limit setting \rightarrow njet = 0,1 and ≥ 2
- Limits are set using the Feldman-Cousins prescription
- Confidence level interval are build using a Likelihood ratio test statistic
- Assuming BR(b \rightarrow tW) = 1 \rightarrow m(b') > 290GeV

CMS - Search for t' dilepton 1/3

PAS-EXO-11-050

• Search for heavy top-like: t't' \rightarrow WbWb \rightarrow lvb lvb (l=e/ μ)

• <u>Selection:</u>

- 2 (or more) opposite sign leptons; pt>20GeV; $|\eta| < 2.4$
- Dilepton triggers efficiency \rightarrow 100, 95, 90% for ee, eµ, µµ, respectively
- Lepton isolation $\rightarrow \Sigma ET(\Delta R < 0.3) < 0.15^* pT$
- Z mass veto for ee, $\mu\mu \rightarrow$ removed event if 76 < Mll < 106GeV or Mll<12GeV
- Jets: Anti-kt R=0.5; pT>30GeV; $|\eta| < 2.5$ (separated by $\Delta R > 0.4$ from selected leptons)
 - At least 2 jets and at least two of them b-tag
- ETMiss > 30GeV

CMS - Search for t' dilepton 2/3

PAS-EXO-11-050

• <u>Signal region</u>:

 \rightarrow after basics selection ttbar dominates...

- The invariant mass of lepton and b-jet is used as discriminant
- At generator level: → clear distinction between t' and top
- At reconstruction level: → pairing done with min(ΔR) between lepton and bjet
- Mlb > 170GeV is applied for the two masses
 - → signal efficiency ~ 40%
 - \rightarrow ttbar very small...

Sample	ee	$\mu\mu$	$\mathrm{e}\mu$	all
$t'\bar{t'}, M_{t'} = 350 \text{GeV}/c^2$	5.63 ± 0.41	5.63 ± 0.38	13.43 ± 0.61	24.69 ± 0.83
$t'\bar{t'}, M_{t'} = 400 \text{GeV}/c^2$	2.51 ± 0.18	2.92 ± 0.19	6.33 ± 0.28	11.76 ± 0.38
$t' \bar{t'}, M_{t'} = 450 \text{GeV}/c^2$	1.45 ± 0.09	1.53 ± 0.09	3.27 ± 0.14	6.25 ± 0.19
$t\bar{t} \to \ell^+ \ell^-$	167.46 ± 5.85	178.88 ± 5.71	445.45 ± 9.30	791.79 ± 12.38
$t\bar{t} \rightarrow fake$	3.35 ± 0.85	0.19 ± 0.19	5.81 ± 1.04	9.35 ± 1.36
W + jets	< 2	< 2	< 2	< 2
$DY \rightarrow \ell^+ \ell^-$	2.23 ± 1.39	2.15 ± 1.66	< 1	4.38 ± 2.17
Di-boson	0.04 ± 0.01	0.14 ± 0.07	0.14 ± 0.07	0.31 ± 0.10
Single top	2.63 ± 0.28	2.41 ± 0.26	7.03 ± 0.45	12.06 ± 0.59
Total simulated background	175.70 ± 6.08	183.76 ± 5.96	458.43 ± 9.37	817.88 ± 12.66
Data	184	182	512	878

Clément Helsens, IFAE Barcelona

CMS – Search for t' dilepton 3/3 PAS-EXO-11-050

- 1 event observed; 1.62 expected
- 95% CL Limits extracted using Cut and count
- Observed limit $\rightarrow m(t') > 422 \text{GeV} @ 95\% \text{ CL}$

Sample	Yield	Source
$t\bar{t} \to \ell^+ \ell^-$	1.35 ± 0.67	Data
Fake leptons	$0.0\substack{+0.4 \\ -0.0}$	Data
$DY \rightarrow e^+e^- \text{ or } \mu^+\mu^-$	$0.07\substack{+0.13 \\ -0.07}$	Data
$DY \rightarrow \tau^+ \tau^-$	0.11 ± 0.11	Simulation
Di-boson	0.02 ± 0.02	Simulation
Single top	0.07 ± 0.04	Simulation
Total prediction	$1.62_{-0.70}^{+0.80}$	
Data	1	

10/11/2011

17/31

ATLAS – Search for t' dilepton 1/3

- For this analysis, no assumption about the quark mixing in the final state t' → Wq
- Baseline selection:
 - Excatly 2 leptons pT > 20GeV; muon $|\eta| < 2.5$; electron $|\eta| < 2.47 \notin 1.37 < |\eta| < 1.52$
 - Lepton isolation: $\Sigma ET(\Delta R < 0.2) < 4 GeV$
 - Jets: Anti-kt 0.4, pt> 20GeV, $|\eta| < 2.5 \rightarrow$ at least 2 jets
 - ETMiss > 40 GeV (ee/ $\mu\mu$); HT(MET+lep pt) > 130GeV (e μ)
 - For $ee/\mu\mu \rightarrow Mll > 15GeV$; |Mll MZ| > 10GeV
- <u>Reconstruction of the heavy quark masses:</u>
 - At high W pT \rightarrow neutrino and lepton \sim collinear
 - Reconstruct both neutrinos by assuming solely contribution to MET
 - Reconstruct $|\Delta \eta(l,v)|$ and $|\Delta \Phi(l,v)|$ for each neutrino as a free parameter \rightarrow range [0,1]
 - Find the $|\Delta \eta(l,v)|$ and $|\Delta \Phi(l,v)|$ values and jet assignment that minimizes the differences between the two masses (collinear mass)

ATLAS-CONF-2011-022

Clément Helsens, IFAE Barcelona

ATLAS – Search for t' dilepton 2/3

	~ .
Q_4 Mass (GeV)	Final selection
250	$H_{\rm T}$ > 500 – 0.7 × $M_{collinear}$
300	$H_{\rm T} > 600 - 0.5 \times M_{collinear}$
350	$H_{\rm T} > 600 - 0.2 \times M_{collinear}$
400	$H_{\rm T}$ > 700 – 0.3 × $M_{collinear}$

10/11/2011

ATLAS-CONF-2011-022

Final selection: → triangular cut in the Mcoll – HT plane (= Hthad + lepton pT + MET)

- Optimized for each t' mass → improve the signal/background discrimination
- → Mcoll after triangular cut
 is used to discriminate
 signal and background

Clément Helsens, IFAE Barcelona

19/31

ATLAS – Search for t' dilepton 3/3

ATLAS-CONF-2011-022

Q_4 Mass [GeV/ c^2]	250	300	350	400
Total BG	$40.4 \pm 0.7 \pm 3.9$	$16.8 \pm 0.5 \pm 1.7$	$10.1 \pm 0.4 \pm 1.0$	$6.3 \pm 0.4 \pm 0.8$
Signal	$20.7 \pm 0.5 \pm 1.9$	$7.1 \pm 0.2 \pm 0.3$	$3.0 \pm 0.1 \pm 0.2$	$1.4 \pm 0.1 \pm 0.1$
Observed	40	11	8	5

Binned maximum likelihood used to set limit on the production cross • section (Feldmans Cousins principle used to build the confidence band) Template fit using the Mcoll distribution

Cross Section (pb)

Observed limit m(t') > 270 GeV @ 95% CL

Source	Effect	Size [%]
Electron trigger and reconstruction	Yield	1.6%
Electron ID	Yield	2-9%
Muon ID and reconstruction	Yield	0.3%
Muon trigger	Yield	0.1-1.3%
Electron energy scale	Shape	0.6%
Muon momentum scale	Shape	0.1%
Jet energy scale	Shape and Yield	12%
Gluon radiation	Shape and Yield	15%
Signal cross-section	Yield	14%
Background cross-sections	Yield	5-30%
Fake lepton background	Shape and Yield	50%
Luminosity	Yield	11%

CMS – Search for t' single-lepton 1/3 PAS-EXO-11-051

• Final state $t't' \rightarrow WbWb \rightarrow qqb l\nu b$

• <u>Selection:</u>

- Isolated Electron pt > 30 45 GeV (trigger threshold changed) $|\eta| < 2.4 \notin 1.44 < |\eta| < 1.57$
- Isolated Muon pt > 35 GeV $|\eta| < 2.1$
- Jets: Anti-kt R= $0.5 \rightarrow 4$ jets 120, 90, 35, 35 GeV
- MET > 20GeV
- At least 1 btag jet

process	cross section	e+jets eff.	$\mu + {\rm jets}$ eff.
$t' \bar{t'}$			
$m_{t'}=350~{\rm GeV}$	$3.20 \mathrm{~pb}$	$3.7\pm0.4\%$	$4.5\pm0.3\%$
$m_{t'} = 400~{\rm GeV}$	$1.41 \mathrm{\ pb}$	$4.3\pm0.4\%$	$5.2\pm0.4\%$
$m_{t'} = 450 \; {\rm GeV}$	0.66 pb	$4.8\pm0.4\%$	$5.6\pm0.4\%$
$m_{t'}=500~{\rm GeV}$	0.33 pb	$5.0\pm0.4\%$	$5.8\pm0.4\%$
CMS simulation			

process	cross section	e+jets events	μ +jets events
L		$573 { m ~pb^{-1}}$	821 pb^{-1}
data		520	1054
$t\bar{t}$	158 pb	456 ± 91	907 ± 114
single t	33 pb	14.5 ± 3.5	30 ± 6
W+jets	$30~\mu{ m b}$	33.3 ± 8.2	106 ± 25
Z+jets	$2.9 \ \mu \mathrm{b}$	4.5 ± 1.2	2.6 ± 2.6
WW, WZ, ZZ	$67 \mathrm{\ pb}$		2.1 ± 0.6
multijets		2.5 ± 1.2	5.7 ± 5.5
total background		510 ± 103	1054 ± 145

CMS - Search for t' single-lepton 2/3

- Mass reconstruction → take four-jet combination out of the hardest 5 jets
- Use the W mass constraint and leptonic/hadronic t' mass should be equal
- A kinematic fit is performed by minimizing a chi2 from the measured momenta of all the particles and their resolutions
- Fitted t' mass is used together with HT → 2D discriminant unfolded in a 1D

10/11/2011

PAS-EXO-11-051

500

23/31

CMS - Search for t' single-lepton 3/3

PAS-EXO-11-051

- CLs method used to set limits on the t't' production cross section
- Assuming BR(t' \rightarrow Wb) = 1 \rightarrow m(t') > 450GeV @ 95%CL

Clément Helsens, IFAE Barcelona

ATLAS – Search for t' single-lepton 1/2

Not yet public...

- As in CMS: Final state $t't' \rightarrow WbWb \rightarrow jjb l\nu b$
- <u>Strategy:</u>
 - Stay as close as possible to the top group selection
 - Relatively low jet pT (60/25/25), and lepton pT (e/mu 25/20)
 - Using the btagging (\geq 1bjet 70% efficiency, optimize to get best S/sqrt(B))
- <u>1D kinematic Likelihood fit</u>
 - Reconstructed top mass
 - 3 jet bin: just the invariant mass of the 3 jets
 - >=4 jets: using KLFitter (see many talks about performance)
 - Using leading 4 jets only
 - Floating 'top' mass
 - Only constrain both 'sides' to be similar
- <u>Use mclimit package to set CLs limits</u>
 - Modified package:
 - Extrapolation methods
 - Added functionality for running tests et

Helps to constraint systematics with profiling

ATLAS – Search for t' single-lepton 2/2

Not yet public...

- We treat systematics as nuisance parameters
- ATLAS list of systematics is very conservative respect to CMS (23 sources considered, 13 are profiled; CMS 7 systematics, no ttbar modeling)
- A profile likelihood ratio is performed combining 3jet exclusive/4 jet inclusive channel for at least 1btag jet and electron and muon channels
- Full results will be made public soon (aiming HCP)

CMS – Inclusive search for a 4th generation 1/3

- This analysis presents the inclusive search of 4^{th} generation up-down type quark from pair or single production (t'b \rightarrow Wb b; b't \rightarrow WbW Wb; t't' \rightarrow WbWb; b'b' \rightarrow WbW WbW)
- <u>Search is performed in the muon channel:</u>
 - 1 isolated muon pt> 40 GeV; $|\eta| < 2.1$; veto other isolated muons pT >10GeV, $|\eta| < 2.5$; veto electrons pt>20GeV; $|\eta| < 2.5$
 - Jets pt> 30GeV; $|\eta| < 2.5$; ≥ 1 to be a b-tag ($|\eta| < 2.4$ tracker acceptance)
 - MET>40GeV to reduce QCD multijet
- Search performed in 6 subsamples, based on nb-jet (==1, ≥ 2); nWhad (==0, ==1, ==2, ≥ 3)
 - 1B_0W \rightarrow single t' with 1 fwd/1central bjet; ==1 forward jet (2.4<| η |<5) pT>30GeV
 - 2B_0W \rightarrow single t' with 2central bjets; ==0 forward jet (2.4<| η |<5) pT>30GeV
 - 1B_1W \rightarrow t't' tt pair production with 1 b-jet failing ID; ≥ 3 jets in addition of the btag
 - 2B_1W
 - 2B_2W $> \rightarrow$ one additional bjet at least 2, 4, 6 additional jets
 - 2B_3W

Clément Helsens, IFAE Barcelona

CMS – Inclusive search for a 4th generation 2/3 PAS-EXO-11-054

- HT discriminant is used = scalar sum of MET, muon pT, btag jets, Whad pT
- HT is sensitive to the presence of $4^{\mbox{th}}$ generation quark
- A 4th generation quark would appear in the high tails of the HT distribution
- The 6 channels are combined into a single template histogram
- The 4 different signals processes are added into a single distribution for the signal

 $CKM4 = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} & V_{ub'} \\ V_{cd} & V_{cs} & V_{cb} & V_{cb'} \\ V_{td} & V_{ts} & V_{tb} & V_{tb'} \\ V_{t'd} & V_{t's} & V_{t'b} & V_{t'b'} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \sqrt{A} & \sqrt{1-A} \\ 0 & 0 & \sqrt{1-A} & \sqrt{A} \end{pmatrix}$

- Different templates of signal are made for each value of A and masses of the new quark
- The results are presented in the plane (A, mq4), where mq4 is the degenerate mass of the quarks, A = |Vtb|2
- Using the CLs method is used to set limits together with a profile likelihood template fit
- For minimal off diagonal mixing, (A~1) between the third and the fourth generation, mt' = mb' > 490GeV @ 95%CL

ttbar + Anomalous E_{T}^{miss} 1/2

arXiv:1109.4725

- Search for anomalous MET in tt (single lepton) events
- Benchmark: TT pair with $T \rightarrow tA_0$
 - A_0 is a dark matter candidate
 - Enhanced cross section due to spin states

Signal region:

- E_T^{miss} > 100GeV, m_T >150GeV, dilepton veto, p_T >15GeV, tracks, loose electrons

Source	Number of events
Dilepton $t\overline{t}$	62 ± 15
Single-lepton $t\bar{t}/W$ +jets	33.1 ± 3.8
Multi-jet	1.2 ± 1.2
Single top	3.5 ± 0.8
Z+jets	0.9 ± 0.3
Dibosons	0.9 ± 0.2
Total	101 ± 16
Data	105

10/11/2011

Clément Helsens, IFAE Barcelona

ttbar + Anomalous E_{T}^{miss} 2/2

arXiv:1109.4725

• Assuming $BR(T \rightarrow tA0) = 1$

- Cut and count method used to set limit using frequentist confidence intervals
- 95% CL limits on TT pair production cross section (depend on A0 and T masses)
 - m(T) < 420 GeV for m(A0) < 10GeV
 - 330 < m(T) < 390 GeV for m(A0) < 140 GeV

Conclusion and Outlook

- ATLAS and CMS have performed the search for new heavy quarks in several decay channels
 - Search for new heavy quarks made a lot of quick progress at LHC
 - Most stringent constraints so far for 4th generation quarks assuming a dominant mixing to the 3rd generation
 - m(t') > 450 GeV; m(b') > 495 GeV; m(q4) > 490 GeV (A~1)
 - Limits on (mT, A0) for top partners produced with large MET
 - m(T) > 400 GeV for m(A0) < 100 GeV
- Some analysis still based on 2010 dataset, but are being updated (in the pipeline for approval)
- Improvement expected for Moriond ~ factor of 4 in luminosity
- Heavy quarks are maybe already on tape!!

IFAE9