Higgs Physics in the Standard Model with Four Chiral Generations

Akın Wingerter

Laboratoire de Physique Subatomique et de Cosmologie UJF Grenoble 1, CNRS/IN2P3, INPG, Grenoble, France

October 11, 2011

Based on arXiv:1109.5140

The Standard Model

Gauge group:

$\mathrm{SU}(3)_c\times \mathrm{SU}(2)_L\times \mathrm{U}(1)_Y$

Particle content:

QUARKS		LEPTONS		HIGGS	
Q	$({\bf 3},{\bf 2})_{1/3}$	L	$(1, 2)_{-1}$	Н	(1, 2) ₋₁
ū	$(\overline{3},1)_{-4/3}$	ē	$(1,1)_2$		
ā	$(\overline{3},1)_{2/3}$	$\bar{ u}$	$(1,1)_0$		

Parameters:

19 (massless neutrinos), 26 (Dirac neutrinos), 28 (Majorana)

Akın Wingerter, LPSC Grenoble

The Standard Model

Excellent agreement between theory and data

The LEP Electroweak Working Group, Plots for Summer 2011

Akın Wingerter, LPSC Grenoble

The Standard Model

But the Higgs makes people nervous ...

Preferred $m_H = 92$ GeV, upper limit $m_H < 185$ GeV (95% C.L.)

LEP: $m_H > 114.4 \text{ GeV}$ (and recently LHC: $m_H < 145 \text{ GeV}$)

The LEP Electroweak Working Group, Plots for Summer 2011

Akın Wingerter, LPSC Grenoble Higgs Physics in the

Why a Fourth Generation?

Fourth generation masses can be chosen in such a way that S, T parameters are consistent with heavier Higgs, see e.g. Kribs et al. arXiv:0706.3718

PDG Review Article by J. Erler and P. Langacker, "Electroweak model and constraints on new physics"

Akın Wingerter, LPSC Grenoble Higgs Pl

Why a Fourth Generation?

Single top production

DØ Collaboration, V. M. Abazov et al., arXiv:0903.0850

 $\begin{array}{ll} |V_{tb} \, f_1^L| &=& 1.07 \pm 0.12 \, ({\rm stat+syst}) \ {\rm assuming \ upper \ bound \ of \ 1} \\ |V_{tb}| &>& 0.78 \quad @95\% \ {\rm C.L. \ with \ no \ assumptions} \end{array}$

> $t\overline{t}$ production

DØ Collaboration, V. M. Abazov et al., hep-ex/0603002.

$$R = \frac{\mathcal{B}(t \to Wb)}{\mathcal{B}(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2} = 1.03^{+0.19}_{-0.17}$$

Why a Fourth Generation?

> J. Alwall et al., "Is V(tb) = 1?," Eur. Phys. J. C49 (2007) 791-801, hep-ph/0607115. $|V_{tb}| = 1$ need not necessarily hold; $|V_{tb}| > 0.9$; constraints from R_b , $b \rightarrow s\gamma$, S, T

M. Bobrowski, A. Lenz, J. Riedl, and J. Rohrwild, arXiv:0902.4883. Constraints from FCNCs and $b \rightarrow s\gamma$; small mixing of 3rd and 4th family favored, but sizable mixing $\theta_{34} \sim 42^{\circ}$ possible

M. S. Chanowitz, arXiv:0904.3570.

Mixing can be as large as $\theta_{34} \sim 13^{\circ}$; main constraints come from *S*, *T*; large(r) mixing as suggested by Bobrowski et al. excluded

> Only sizable coupling of 4th generation is to 3rd generation:

$$V_{\mathsf{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \quad \begin{array}{c} \leftarrow & \sum V_{uq}^2 \simeq 1 \\ \leftarrow & \sum V_{cq}^2 \simeq 1 \\ \leftarrow & \sum V_{tq}^2 \gtrsim 0.78 \\ \end{array}$$

Why a Fourth Generation?

- > Why not?
- $\succ |V_{tb}| \neq 1$ is still a possibility
- Allows for heavier Higgs
- No explanation for number of generations in SM

The Higgs Boson in the SM4

So how heavy can the Higgs boson be?

> Unitarity bound: $m_H \lesssim 1000$ GeV ?

B. W. Lee, C. Quigg, and H. Thacker, "The Strength of Weak Interactions at Very High-Energies and the Higgs Boson Mass," *Phys.Rev.Lett.* **38** (1977) 883–885.

The Higgs Boson in the SM4

So how heavy can the Higgs boson be?

> Electroweak precision measurements: $m_H \lesssim 900$ GeV ?

GFITTER Collaboration, arXiv:1107.0975.

The Higgs Boson in the SM4

So how heavy can the Higgs boson be?

> Stability and triviality bounds: $m_H \lesssim 470$ GeV ?

500

Kribs et al. arXiv:0706.3718

Akın Wingerter, LPSC Grenoble

Stability & Triviality Bound in the SM4

Stability & Triviality

Akın Wingerter, LPSC Grenoble Higgs Physics in the SM4

Stability & Triviality Bound in the SM4

We extend the stability & triviality analysis:

- ➤ Full 2-loop RGEs to run all SM parameters
- > Include massive fourth generation neutrino
- > 1-loop matching corrections for Higgs and top
- > Non-zero mixing between the third and the fourth generation
- > Constraints from the perturbativity of the Yukawa couplings

2-loop renormalization group equations

Main reference for the RGEs

M. E. Machacek and M. T. Vaughn, "Two Loop Renormalization Group Equations in a General Quantum Field Theory. 1. Wave Function Renormalization," *Nucl. Phys.* **B222** (1983) 83.

M. E. Machacek and M. T. Vaughn, "Two Loop Renormalization Group Equations in a General Quantum Field Theory. 2. Yukawa Couplings," *Nucl. Phys.* **B236** (1984) 221.

M. E. Machacek and M. T. Vaughn, "Two Loop Renormalization Group Equations in a General Quantum Field Theory. 3. Scalar Quartic Couplings," *Nucl. Phys.* **B249** (1985) 70.

> Some typos corrected

H. Arason, D. Castano, B. Keszthelyi, S. Mikaelian, E. Piard, et al., "Renormalization group study of the standard model and its extensions. 1. The Standard model," *Phys.Rev.* **D46** (1992) 3945–3965.

C. Ford, D. Jones, P. Stephenson, and M. Einhorn, "The Effective potential and the renormalization group," *Nucl.Phys.* B395 (1993) 17–34, hep-lat/9210033.

M.-x. Luo and Y. Xiao, "Two-loop renormalization group equations in the standard model," *Phys. Rev. Lett.* **90** (2003) 011601, hep-ph/0207271.

Neutrino masses included

Y. F. Pirogov and O. V. Zenin, "Two-loop renormalization group restrictions on the standard model and the fourth chiral family," *Eur. Phys. J.* **C10** (1999) 629–638, hep-ph/9808396.

$$\lambda(\mu) = \frac{m_H^2}{v^2} \left(1 + \delta_H(\mu)\right) \bigg|_{\mu=m_H}, \quad y_t(\mu) = \frac{\sqrt{2}m_t}{v} \left(1 + \delta_t(\mu)\right) \bigg|_{\mu=m_t}$$

- > At tree-level: Relation between $\lambda \leftrightarrow m_H$ and $y_t \leftrightarrow m_t$
- \succ At one-loop: Correction between $\overline{\mathrm{MS}}$ couplings and physical masses
- > Input: $\lambda(M_Z)$, $m_t \rightarrow$ Solve for: m_H , $y_t(M_Z)$
- > Use $\lambda(M_Z)$, $y_t(M_Z)$ as boundary conditions for RGE
- We know physical Higgs mass from solution of equations Pole mass of top was already known from the start

$$\lambda(\mu) = \left. \frac{m_H^2}{v^2} \left(1 + \delta_H(\mu) \right) \right|_{\mu=m_H}, \quad y_t(\mu) = \frac{\sqrt{2}m_t}{v} \left(1 + \delta_t(\mu) \right) \right|_{\mu=m_t}$$

> At tree-level: Relation between $\lambda \leftrightarrow m_H$ and $y_t \leftrightarrow m_t$

- \succ At one-loop: Correction between $\overline{\rm MS}$ couplings and physical masses
- > Input: $\lambda(M_Z)$, $m_t \rightarrow$ Solve for: m_H , $y_t(M_Z)$
- > Use $\lambda(M_Z)$, $y_t(M_Z)$ as boundary conditions for RGE
- We know physical Higgs mass from solution of equations Pole mass of top was already known from the start

$$\lambda(\mu) = \left. \frac{m_H^2}{v^2} \left(1 + \delta_H(\mu) \right) \right|_{\mu=m_H}, \quad y_t(\mu) = \frac{\sqrt{2}m_t}{v} \left(1 + \delta_t(\mu) \right) \right|_{\mu=m_t}$$

> At tree-level: Relation between $\lambda \leftrightarrow m_H$ and $y_t \leftrightarrow m_t$

- At one-loop: Correction between MS couplings and physical masses
- > Input: $\lambda(M_Z)$, $m_t \sim$ Solve for: m_H , $y_t(M_Z)$
- > Use $\lambda(M_Z)$, $y_t(M_Z)$ as boundary conditions for RGE
- We know physical Higgs mass from solution of equations Pole mass of top was already known from the start

$$\lambda(\mu) = \left. \frac{m_H^2}{v^2} \left(1 + \delta_H(\mu) \right) \right|_{\mu=m_H}, \quad y_t(\mu) = \left. \frac{\sqrt{2}m_t}{v} \left(1 + \delta_t(\mu) \right) \right|_{\mu=m_t}$$

> At tree-level: Relation between $\lambda \leftrightarrow m_H$ and $y_t \leftrightarrow m_t$

- > At one-loop: Correction between $\overline{\mathrm{MS}}$ couplings and physical masses
- > Input: $\lambda(M_Z)$, $m_t \rightarrow$ Solve for: m_H , $y_t(M_Z)$
- > Use $\lambda(M_Z)$, $y_t(M_Z)$ as boundary conditions for RGE
- We know physical Higgs mass from solution of equations Pole mass of top was already known from the start

$$\lambda(\mu) = \left. \frac{m_H^2}{v^2} \left(1 + \delta_H(\mu) \right) \right|_{\mu=m_H}, \quad y_t(\mu) = \frac{\sqrt{2}m_t}{v} \left(1 + \delta_t(\mu) \right) \right|_{\mu=m_t}$$

 $-\frac{12 \log \left(c^{2}\right) c^{4}}{c} + \frac{12 \log \left(\frac{\mu_{p}^{2}}{\mu^{2}}\right) c^{4}}{c} + \frac{3 \log \left(\frac{c^{2} m_{p}^{2}}{\mu^{2}}\right) c^{4}}{c^{2}} - \frac{12 Z \left(\frac{c^{2}}{2}\right) c^{4}}{c} + \frac{16 c^{4}}{c} - \frac{14 \log \left(c^{2}\right) c^{2}}{c^{2}} + 28 \log \left(c^{2}\right) c^{2} - \frac{3 \xi \log \left(\frac{m_{p}^{2}}{\mu^{2}}\right) c^{2}}{c^{2} - c} - 20 \log \left(\frac{\mu^{2}}{c^{2}}\right) c^{2} + 4 Z \left(\frac{c^{2}}{c}\right) c^{2}$ $-32c^{2} - 17s^{2} - \frac{3m_{y}^{4}V_{D'}^{2}}{(m_{w}^{2} - m^{2})m^{2}} + \frac{3m_{y}^{4}V_{D'}^{2}}{(m_{w}^{2} - m^{2})m^{2}} - \frac{3m_{y}^{4}V_{D'}^{2}}{(m_{w}^{2} - m^{2})m^{2}} + \frac{3m_{y}^{4}V_{D'}^{2}}{(m^{2} - m^{2})m^{2}} - \frac{3m_{y}^{4}V_{D'}^{2}}{(m^{2} - m^{2})m^{2}} + \frac{3m_{y}^{4}V_{D'}^{2}}{(m^{2} - m^{2})m^{2$ $-\frac{m_{1'}^{2}U_{1'',1'}^{2}}{(m_{1''}^{2}-m_{1''}^{2})m_{2}^{2}}+\frac{m_{1'}^{2}U_{1'',1''}^{2}}{(m_{1''}^{2}-m_{1'}^{2})m_{2}^{2}}-\frac{3}{2}\sqrt{3}\pi\xi+\frac{82\xi}{2}+8i^{2}\log\left(\epsilon^{2}\right)-\xi\log\left(\epsilon^{2}\right)+\frac{17\log\left(\epsilon^{2}\right)}{r^{2}}-29\log\left(\epsilon^{2}\right)+\frac{6m_{1}^{2}V_{1}^{2}\log\left(\frac{m_{1}^{2}}{r^{2}}\right)}{(m_{1}^{2}-m_{1}^{2})m_{2}^{2}}+\frac{6m_{1}^{2}V_{1}^{2}\log\left(\frac{m_{1}^{2}}{r^{2}}\right)}{(m_{1}^{2}-m_{1}^{2})m_{2}^{2}}+\frac{6m_{1}^{2}V_{1}^{2}\log\left(\epsilon^{2}\right)}{(m_{1}^{2}-m_{1}^{2})m_{2}^{2}}+\frac{6m_{1}^{2}V_{1}^{2}\log\left(\frac{m_{1}^{2}}{r^{2}}\right)}{(m_{1}^{2}-m_{1}^{2})m_{2}^{2}}+\frac{6m_{1}^{2}V_{1}^{2}\log\left(\frac{m_{1}^{2}}{r^{2}}\right)}{(m_{1}^{2}-m_{1}^{2})m_{2}^{2}}+\frac{6m_{1}^{2}V_{1}^{2}\log\left(\frac{m_{1}^{2}}{r^{2}}\right)}{(m_{1}^{2}-m_{1}^{2})m_{2}^{2}}+\frac{6m_{1}^{2}V_{1}^{2}\log\left(\frac{m_{1}^{2}}{r^{2}}\right)}{(m_{1}^{2}-m_{1}^{2})m_{2}^{2}}+\frac{6m_{1}^{2}V_{1}^{2}\log\left(\frac{m_{1}^{2}}{r^{2}}\right)}{(m_{1}^{2}-m_{1}^{2})m_{2}^{2}}+\frac{6m_{1}^{2}V_{1}^{2}\log\left(\frac{m_{1}^{2}}{r^{2}}\right)}{(m_{1}^{2}-m_{1}^{2})m_{2}^{2}}+\frac{6m_{1}^{2}V_{1}^{2}\log\left(\frac{m_{1}^{2}}{r^{2}}\right)}{(m_{1}^{2}-m_{1}^{2})m_{2}^{2}}+\frac{6m_{1}^{2}V_{1}^{2}\log\left(\frac{m_{1}^{2}}{r^{2}}\right)}{(m_{1}^{2}-m_{1}^{2})m_{2}^{2}}+\frac{6m_{1}^{2}V_{1}^{2}\log\left(\frac{m_{1}^{2}}{r^{2}}\right)}{(m_{1}^{2}-m_{1}^{2})m_{2}^{2}}+\frac{6m_{1}^{2}V_{1}^{2}\log\left(\frac{m_{1}^{2}}{r^{2}}\right)}{(m_{1}^{2}-m_{1}^{2})m_{2}^{2}}+\frac{6m_{1}^{2}V_{1}^{2}\log\left(\frac{m_{1}^{2}}{r^{2}}\right)}{(m_{1}^{2}-m_{1}^{2})m_{2}^{2}}+\frac{6m_{1}^{2}V_{1}^{2}\log\left(\frac{m_{1}^{2}}{r^{2}}\right)}{(m_{1}^{2}-m_{1}^{2})m_{2}^{2}}+\frac{6m_{1}^{2}V_{1}^{2}\log\left(\frac{m_{1}^{2}}{r^{2}}\right)}{(m_{1}^{2}-m_{1}^{2})m_{2}^{2}}+\frac{6m_{1}^{2}V_{1}^{2}}{(m_{1}^{2}-m_{1}^{2})m_{2}^{2}}+\frac{6m_{1}^{2}V_{1}^{2}}{(m_{1}^{2}-m_{1}^{2})m_{2}^{2}}+\frac{6m_{1}^{2}V_{1}^{2}}{(m_{1}^{2}-m_{1}^{2})m_{2}^{2}}+\frac{6m_{1}^{2}V_{1}^{2}}{(m_{1}^{2}-m_{1}^{2})m_{2}^{2}}+\frac{6m_{1}^{2}V_{1}^{2}}{(m_{1}^{2}-m_{1}^{2})m_{2}^{2}}+\frac{6m_{1}^{2}V_{1}^{2}}{(m_{1}^{2}-m_{1}^{2})m_{2}^{2}}+\frac{6m_{1}^{2}V_{1}^{2}}{(m_{1}^{2}-m_{1}^{2})m_{2}^{2}}+\frac{6m_{1}^{2}V_{1}^{2}}{(m_{1}^{2}-m_{1}^{2})m_{2}^{2}}+\frac{6m_{1}^{2}V_{1}^{2}}{(m_{1}^{2}-m_{1}^{2})m_{2}^{2}}+\frac{6m_{1}^{2}V_{1}^{2}}{(m_{1}^{2}-m_{1}^{2})m_{2}^{2}}}+\frac{6m_{1}^{2}V_{1}^{2}}{(m$ $+\frac{m_{\mu}^{2}v_{\mu}^{2}v_{\mu}^{2}\left(m_{\mu}^{2}\right)}{(m_{\mu}^{2}-m_{\mu}^{2})m_{\mu}^{2}}+\frac{2m_{\mu}^{2}v_{\mu}^{2}v_{\mu}^{2}\log\left(m_{\mu}^{2}\right)}{(m_{\mu}^{2}-m_{\mu}^{2})m_{\mu}^{2}}+0 \\ \left(m_{\mu}^{2}-m_{\mu}^{2}\right)m_{\mu}^{2}-\frac{6m_{\mu}^{2}v_{\mu}^{2}\log\left(m_{\mu}^{2}\right)}{(m_{\mu}^{2}-m_{\mu}^{2})m_{\mu}^{2}}-\frac{6m_{\mu}^{2}v_{\mu}^{2}\log\left(m_{\mu}^{2}\right)}{(m_{\mu}^{2}-m_{\mu}^{2})m_{\mu}^{2}}-\frac{6m_{\mu}^{2}v_{\mu}^{2}\log\left(m_{\mu}^{2}\right)}{(m_{\mu}^{2}-m_{\mu}^{2})m_{\mu}^{2}}-\frac{6m_{\mu}^{2}v_{\mu}^{2}\log\left(m_{\mu}^{2}\right)}{(m_{\mu}^{2}-m_{\mu}^{2})m_{\mu}^{2}}-\frac{6m_{\mu}^{2}v_{\mu}^{2}\log\left(m_{\mu}^{2}-m_{\mu}^{2}\right)}{(m_{\mu}^{2}-m_{\mu}^{2})m_{\mu}^{2}}-\frac{6m_{\mu}^{2}v_{\mu}^{2}\log\left(m_{\mu}^{2}-m_{\mu}^{2}\right)}{(m_{\mu}^{2}-m_{\mu}^{2})m_{\mu}^{2}}-\frac{6m_{\mu}^{2}v_{\mu}^{2}\log\left(m_{\mu}^{2}-m_{\mu}^{2}\right)}{(m_{\mu}^{2}-m_{\mu}^{2})m_{\mu}^{2}}-\frac{6m_{\mu}^{2}v_{\mu}^{2}\log\left(m_{\mu}^{2}-m_{\mu}^{2}\right)}{(m_{\mu}^{2}-m_{\mu}^{2})m_{\mu}^{2}}-\frac{6m_{\mu}^{2}v_{\mu}^{2}\log\left(m_{\mu}^{2}-m_{\mu}^{2}\right)}{(m_{\mu}^{2}-m_{\mu}^{2})m_{\mu}^{2}}-\frac{6m_{\mu}^{2}v_{\mu}^{2}\log\left(m_{\mu}^{2}-m_{\mu}^{2}\right)}{(m_{\mu}^{2}-m_{\mu}^{2})m_{\mu}^{2}}-\frac{6m_{\mu}^{2}v_{\mu}^{2}\log\left(m_{\mu}^{2}-m_{\mu}^{2}\right)}{(m_{\mu}^{2}-m_{\mu}^{2})m_{\mu}^{2}}-\frac{6m_{\mu}^{2}v_{\mu}^{2}\log\left(m_{\mu}^{2}-m_{\mu}^{2}\right)}{(m_{\mu}^{2}-m_{\mu}^{2})m_{\mu}^{2}}-\frac{6m_{\mu}^{2}v_{\mu}^{2}\log\left(m_{\mu}^{2}-m_{\mu}^{2}\right)}{(m_{\mu}^{2}-m_{\mu}^{2})m_{\mu}^{2}}-\frac{6m_{\mu}^{2}v_{\mu}^{2}\log\left(m_{\mu}^{2}-m_{\mu}^{2}\right)}{(m_{\mu}^{2}-m_{\mu}^{2})m_{\mu}^{2}}-\frac{6m_{\mu}^{2}v_{\mu}^{2}\log\left(m_{\mu}^{2}-m_{\mu}^{2}\right)}{(m_{\mu}^{2}-m_{\mu}^{2})m_{\mu}^{2}}-\frac{6m_{\mu}^{2}v_{\mu}^{2}\log\left(m_{\mu}^{2}-m_{\mu}^{2}\right)}{(m_{\mu}^{2}-m_{\mu}^{2})m_{\mu}^{2}}-\frac{6m_{\mu}^{2}v_{\mu}^{2}}{(m_{\mu}^{2}-m_{\mu}^{2})m_{\mu}^{2}}-\frac{6m_{\mu}^{2}v_{\mu}^{2}}{(m_{\mu}^{2}-m_{\mu}^{2})m_{\mu}^{2}}-\frac{6m_{\mu}^{2}v_{\mu}^{2}}{(m_{\mu}^{2}-m_{\mu}^{2})m_{\mu}^{2}}-\frac{6m_{\mu}^{2}v_{\mu}^{2}}{(m_{\mu}^{2}-m_{\mu}^{2})m_{\mu}^{2}}-\frac{6m_{\mu}^{2}v_{\mu}^{2}}{(m_{\mu}^{2}-m_{\mu}^{2})m_{\mu}^{2}}-\frac{6m_{\mu}^{2}v_{\mu}^{2}}{(m_{\mu}^{2}-m_{\mu}^{2})m_{\mu}^{2}}-\frac{6m_{\mu}^{2}v_{\mu}^{2}}{(m_{\mu}^{2}-m_{\mu}^{2})m_{\mu}^{2}}-\frac{6m_{\mu}^{2}v_{\mu}^{2}}{(m_{\mu}^{2}-m_{\mu}^{2})m_{\mu}^{2}}-\frac{6m_{\mu}^{2}v_{\mu}^{2}}{(m_{\mu}^{2}-m_{\mu}^{2})m_{\mu}^{2}}-\frac{6m_{\mu}^{2}v_{\mu}^{2}}{(m_{\mu}^{2}-m_{\mu}^{2})m_{\mu}^{2}}-\frac{6m_{\mu}^{2}v_{\mu}^{2}}{(m_{\mu}^{2}-m_{\mu}^{2})m_{\mu}^{2}}-\frac{6m_{\mu}^{2}v_{\mu}^{2}}{$ $-\frac{2m_{\mu}^{\mu}U_{\mu',\mu}^{\mu}\log\left(\frac{m_{\mu'}^{2}}{m_{\mu}^{2}}\right)}{(m_{\mu'}^{2}-m_{\mu'}^{2})m_{\mu'}^{2}}-\frac{24m_{\mu'}^{\mu}\log\left(\frac{\mu^{2}}{m_{\mu'}^{2}}\right)}{m_{\mu'}^{2}}-\frac{24m_{\mu'}^{\mu}\log\left(\frac{\mu^{2}}{m_{\mu'}^{2}}\right)}{m_{\mu'}^{2}\varepsilon}-\frac{24m_{\mu'}^{\mu}\log\left(\frac{\mu^{2}}{m_{\mu'}^{2}}\right)}{m_{\mu'}^{4}\varepsilon}-\frac{8m_{\mu'}^{2}\log\left(\frac{\mu^{2}}{m_{\mu'}^{2}}\right)}{m_{\mu'}^{4}\varepsilon}+\frac{6\log\left(\frac{\mu^{2}}{m_{\mu'}^{2}}\right)}{s}+\frac{6m_{\mu'}^{2}\log\left(\frac{\mu^{2}}{m_{\mu'}^{2}}\right)}{m_{\mu'}^{2}}$ $+\frac{2m_{r}^{2}\log\left(\frac{\mu^{2}}{m_{r}^{2}}\right)}{m_{r}^{2}}+\frac{6m_{r}^{2}\log\left(\frac{\mu^{2}}{m_{r}^{2}}\right)}{m_{r}^{2}}+\frac{6m_{r}^{2}\log\left(\frac{\mu^{2}}{m_{r}^{2}}\right)}{m_{r}^{2}}+\frac{2m_{r}^{2}\log\left(\frac{\mu^{2}}{m_{r}^{2}}\right)}{m_{r}^{2}}-2\log\left(\frac{\mu^{2}}{m_{r}^{2}}\right)-\frac{6m_{r}^{2}\log\left(\frac{m_{r}^{2}}{m_{r}^{2}}\right)}{m_{r}^{2}}+\frac{8m_{r}^{4}\log\left(\frac{m_{r}^{2}}{m_{r}^{2}}\right)}{m_{r}^{2}}-\frac{2m_{r}^{2}\log\left(\frac{m_{r}^{2}}{m_{r}^{2}}\right)}{m_{r}^{2}}$ $+\frac{24m_{p}^{4}\log\left(\frac{m_{p}^{2}}{m_{p}^{2}}\right)}{m_{p}^{2}}-\frac{6m_{p}^{2}\log\left(\frac{m_{p}^{2}}{m_{p}^{2}}\right)}{m_{p}^{2}}+\frac{24m_{p}^{4}\log\left(\frac{m_{p}^{2}}{m_{p}^{2}}\right)}{m_{p}^{2}}-\frac{6m_{p}^{2}\log\left(\frac{m_{p}^{2}}{m_{p}^{2}}\right)}{m_{p}^{2}}+\frac{6m_{p}^{2}\log\left(\frac{m_{p}^{2}}{m_{p}^{2}}\right)}{m_{p}^{2}}-\frac{2m_{p}^{2}\log\left(\frac{m_{p}^{2}}{m_{p}^{2}}\right)}{m_{p}^{2}}+11r^{2}\log\left(\frac{r^{2}m_{p}^{2}}{\mu^{2}}\right)-7\log\left(\frac{r^{2}m_{p}^{2}}{\mu^{2}}\right)+\frac{2}{2}\log(\log\left(\frac{r^{2}m_{p}^{2}}{\mu^{2}}\right))$ $-\frac{1}{2}\xi Z\left(\frac{1}{r}\right) - \frac{\delta Z\left(\frac{1}{2}\right)}{r} + 2Z\left(\frac{1}{r}\right) - \xi Z\left(\frac{c^2}{r}\right) + \frac{24m_{p}^{2}Z\left(\frac{m_{p}^{2}}{r}\right)}{m_{s}^{4}\xi} - \frac{6m_{p}^{2}Z\left(\frac{m_{p}^{2}}{r}\right)}{m_{s}^{4}} + \frac{8m_{p}^{4}Z\left(\frac{m_{p}^{2}}{r}\right)}{m_{s}^{4}\xi} - \frac{2m_{r}^{2}Z\left(\frac{m_{p}^{2}}{r}\right)}{m_{s}^{4}\xi} + \frac{24m_{s}^{4}Z\left(\frac{m_{p}^{2}}{m_{s}^{4}\xi}\right)}{m_{s}^{4}\xi} - \frac{6m_{r}^{2}Z\left(\frac{m_{p}^{2}}{r}\right)}{m_{s}^{4}\xi} - \frac{6m_{r}^{2}Z\left(\frac{m_{p}^{2}}{r}\right$ $+\frac{2m_{t}^{2}Z\left(\frac{m_{t}^{2}}{m_{t}^{2}\xi}\right)}{(m_{t}^{2}\xi)}-\frac{6m_{t}^{2}Z\left(\frac{m_{t}^{2}}{m_{t}^{2}\xi}\right)}{(m_{t}^{2}\xi)}+\frac{8m_{t}^{2}Z\left(\frac{m_{t}^{2}}{m_{t}^{2}\xi}\right)}{(m_{t}^{2}\xi)}-\frac{2m_{t}^{2}Z\left(\frac{m_{t}^{2}}{m_{t}^{2}\xi}\right)}{(m_{t}^{2}\xi)}-\frac{48m_{t}^{4}}{m_{t}^{2}\xi}-\frac{48m_{t}^{4}}{m_{t}^{2}\xi}-\frac{48m_{t}^{4}}{m_{t}^{2}\xi}-\frac{48m_{t}^{4}}{m_{t}^{2}\xi}-\frac{16m_{t}^{4}}{m_{t}^{2}\xi}-\frac{8m_{t}^{2}}{m_{t}^{2}\xi}-\frac{12m_{t}^{2}}{m_{t}^{2}\xi}+\frac{4m_{t}^{2}}{m_{t}^{2}\xi}+\frac{12m_{t}^{2}}{m_{t}^{2}}{m_{t}^{2}$

Stability

> Require that effective potential not become unbounded from below

N. Cabibbo, L. Maiani, G. Parisi, and R. Petronzio, "Bounds on the Fermions and Higgs Boson Masses in Grand Unified Theories," *Nucl.Phys.* **B158** (1979) 295–305

\succ Well-approximated by criterion that quartic Higgs coupling λ not become negative anywhere

G. Altarelli and G. Isidori, "Lower limit on the Higgs mass in the standard model: An Update," *Phys.Lett.* B337 (1994) 141–144

J. A. Casas, J. R. Espinosa, and M. Quiros, "Standard Model stability bounds for new physics within LHC reach," *Phys. Lett.* B382 (1996) 374–382

Akın Wingerter, LPSC Grenoble Higgs Physics in the SM4

Triviality

- > At 1-loop: Higgs coupling $\lambda \to \infty$ for renormalization scale $\mu \to \infty$
- > At 2-loop: Higgs coupling $\lambda \rightarrow \lambda_{\rm FP}$ (fixed point)
- > Criterion for perturbativity: $\lambda < \lambda_{\rm FP}/4$ (tight) or $\lambda < \lambda_{\rm FP}/2$ (loose)

Akın Wingerter, LPSC Grenoble Higgs Physics in the SM4

> Stability & triviality curves for the Standard Model

Higgs exclusion from LHC and electroweak precision measurements

> Onset of new physics

 $m_H > 133 \text{ GeV} \leftrightarrow \Lambda = \infty,$

 $m_H = 130 \text{ GeV} \leftrightarrow \Lambda = 1.2 \times 10^{11} \text{ GeV}, \quad m_H = 125 \text{ GeV} \leftrightarrow \Lambda = 1.7 \times 10^8 \text{ GeV}$ $m_H = 120 \text{ GeV} \leftrightarrow \Lambda = 5.9 \times 10^6 \text{ GeV}, \quad m_H = 115 \text{ GeV} \leftrightarrow \Lambda = 650 \text{ TeV}$

Akın Wingerter, LPSC Grenoble

- Stability & triviality curves for the Standard Model
- > Higgs exclusion from LHC and electroweak precision measurements
- ➤ Onset of new physics $m_H > 133 \text{ GeV} \leftrightarrow \Lambda = \infty,$ $m_H = 130 \text{ GeV} \leftrightarrow \Lambda = 1.2 \times 10^{11} \text{ GeV}, \quad m_H = 125 \text{ GeV} \leftrightarrow \Lambda = 1.$ $m_H = 120 \text{ GeV} \leftrightarrow \Lambda = 5.9 \times 10^6 \text{ GeV}, \quad m_H = 115 \text{ GeV} \leftrightarrow \Lambda = 650 \text{ GeV}$

- Stability & triviality curves for the Standard Model
- > Higgs exclusion from LHC and electroweak precision measurements
- > Onset of new physics

$$\begin{split} m_H &> 133 \text{ GeV} \leftrightarrow \Lambda = \infty, \\ m_H &= 130 \text{ GeV} \leftrightarrow \Lambda = 1.2 \times 10^{11} \text{ GeV}, \quad m_H = 125 \text{ GeV} \leftrightarrow \Lambda = 1.7 \times 10^8 \text{ GeV} \\ m_H &= 120 \text{ GeV} \leftrightarrow \Lambda = 5.9 \times 10^6 \text{ GeV}, \quad m_H = 115 \text{ GeV} \leftrightarrow \Lambda = 650 \text{ TeV} \end{split}$$

Nota bene:

- Conclusions only valid in framework of SM
- New particles at low scale?
- More than one Higgs doublet?
- ➤ Vacuum metastable?
- Perturbativity lost, so what! Condensates?
- ➤ Non-exhaustive list . . .

Comparison with 1-loop Case

 \succ m_{t'} = m_{b'} ≃ 250 GeV: Λ ≃ 300 TeV ↔ Λ ≃ 200 or Λ ≃ 40 TeV

Kribs et al. arXiv:0706.3718

- Conclusion 1: Strong dependence on quarks, weak dependence on leptons, mixing negligible for angles allowed by EWP data
- > Conclusion 2: Yukawas become non-perturbative $m_{q,\ell} \sim 400$ GeV
- > Conclusion 3: 200 $< m_H <$ 700 GeV for all quark and lepton masses

Akın Wingerter, LPSC Grenoble Higgs Physics in the SM4

- Conclusion 1: Strong dependence on quarks, weak dependence on leptons, mixing negligible for angles allowed by EWP data
- Conclusion 2: Yukawas become non-perturbative m_{q,l} ~ 400 GeV
- > Conclusion 3: $200 < m_H < 700$ GeV for all quark and lepton masses

Akın Wingerter, LPSC Grenoble Higgs Physics in the SM

- Conclusion 1: Strong dependence on quarks, weak dependence on leptons, mixing negligible for angles allowed by EWP data
- Conclusion 2: Yukawas become non-perturbative m_{q,l} ~ 400 GeV
- > Conclusion 3: $200 < m_H < 700$ GeV for all quark and lepton masses

Akın Wingerter, LPSC Grenoble Higgs Physics in the SM4

- Conclusion 1: Strong dependence on quarks, weak dependence on leptons, mixing negligible for angles allowed by EWP data
- > Conclusion 2: Yukawas become non-perturbative $m_{q,\ell} \sim 400$ GeV
- > Conclusion 3: $200 < m_H < 700$ GeV for all quark and lepton masses

Akın Wingerter, LPSC Grenoble Higgs Physics in the SM

- Conclusion 1: Strong dependence on quarks, weak dependence on leptons, mixing negligible for angles allowed by EWP data
- Conclusion 2: Yukawas become non-perturbative m_{q,l} ~ 400 GeV
- > Conclusion 3: $200 < m_H < 700$ GeV for all quark and lepton masses

Akın Wingerter, LPSC Grenoble Higgs Physics in the SM4

- > Dependence on quark mass scale, $m_{b'}$, $m_{ au'}$, $m_{
 u'}$, quark mixing
- Conclusion 1: Strong dependence on quarks, weak dependence on leptons, mixing negligible for angles allowed by EWP data
- > Conclusion 2: Yukawas become non-perturbative $m_{q,\ell} \sim 400$ GeV
- > Conclusion 3: 200 $< m_H <$ 700 GeV for all quark and lepton masses

Akın Wingerter, LPSC Grenoble Higgs Physics in the SM4

- > Dependence on quark mass scale, $m_{b'}$, $m_{\tau'}$, $m_{\nu'}$, quark mixing
- Conclusion 1: Strong dependence on quarks, weak dependence on leptons, mixing negligible for angles allowed by EWP data

> Conclusion 2: Yukawas become non-perturbative $m_{q,\ell} \sim 400 \text{ GeV}$

> Conclusion 3: 200 $< m_H <$ 700 GeV for all quark and lepton masses

Akın Wingerter, LPSC Grenoble Higgs Physics in the SMM

- > Dependence on quark mass scale, $m_{b'}$, $m_{ au'}$, $m_{
 u'}$, quark mixing
- Conclusion 1: Strong dependence on quarks, weak dependence on leptons, mixing negligible for angles allowed by EWP data
- > Conclusion 2: Yukawas become non-perturbative $m_{q,\ell} \sim 400 \text{ GeV}$
- > Conclusion 3: $200 < m_H < 700$ GeV for all quark and lepton masses

Akın Wingerter, LPSC Grenoble Higgs Physics in the SM4

Fermion Mass Limits From Theory

> Higgs in SM4 excluded for $120 < m_H < 600$ GeV

- > Turn argument around: $m_H > 600 \text{ GeV} \rightarrow m_{t'}, m_{b'} > 300 \text{ GeV}$ and $m_{\tau'}, m_{\nu'} > 350 \text{ GeV}$
- > Excluding $m_H < 700$ GeV kills fourth generation w/perturbative couplings

ATLAS Collaboration, CONF-2011-135, 2011.

Akın Wingerter, LPSC Grenoble Higgs Ph

Fermion Mass Limits From Theory

▶ Higgs in SM4 excluded for $120 < m_H < 600$ GeV

> Turn argument around: $m_H > 600 \text{ GeV} \implies m_{t'}, m_{b'} > 300 \text{ GeV}$ and $m_{\tau'}, m_{\nu'} > 350 \text{ GeV}$

 Excluding m_H < 700 GeV kills fourth generation w/perturbative couplings

Fermion Mass Limits From Theory

- ➤ Higgs in SM4 excluded for 120 < m_H < 600 GeV</p>
- > Turn argument around: $m_H > 600 \text{ GeV} \implies m_{t'}, m_{b'} > 300 \text{ GeV}$ and $m_{\tau'}, m_{\nu'} > 350 \text{ GeV}$

> Excluding $m_H < 700$ GeV kills fourth generation w/perturbative couplings

Collider Limits on Fourth Generation Masses

≻	Limits from t	heory & experiment		
	$\overline{m}_{t'} > 300,$	$\overline{m}_{b'}>$ 300, $\overline{m}_{ au'}>$ 350,	$\overline{m}_{ u'} > 350$	Theory
	$m_{t'} > 358,$	$m_{b'}>372, \ m_{ au'}>100.8,$	$m_{ u'} > 80.5$	Tevatron, LEP
	$m_{t'} > 490,$	$m_{b'} > 490, \ m_{\tau'} > 100.8,$	$m_{ u'} > 80.5$	LHC, LEP

Collider Limits on Fourth Generation Masses

Limits from theory & experime

$\overline{m}_{t'} > 300,$	$\overline{m}_{b'}>300,\ \overline{m}_{ au'}>350,$	$\overline{m}_{ u'}>$ 350	Theory
$m_{t'} > 358,$	$m_{b'}>372, \ m_{ au'}>100.8,$	$m_{ u'} > 80.5$	Tevatron, LEP
$m_{t'} > 490,$	$m_{b'}>490, m_{ au'}>100.8,$	$m_{ u'}>80.5$	LHC, LEP

> Limit on t' mass

CDF Collaboration, T. Aaltonen *et al.*, (2011) 1107.3875. Assumes $t' \rightarrow Wb$, Ws, Wd, **but does not consider** $t' \rightarrow Wb'$ "...small mass splitting preferred ...such that $m_{b'} + M_W > m_{t'}$ "

Collider Limits on Fourth Generation Masses

Limits from theory & experime

$\overline{m}_{t'} > 300,$	$\overline{m}_{b'}>300,\ \overline{m}_{ au'}>350,$	$\overline{m}_{ u'}>$ 350	Theory
$m_{t'} > 358,$	$m_{b'}>372, \ m_{ au'}>100.8,$	$m_{ u'} > 80.5$	Tevatron, LEP
$m_{t'} > 490,$	$m_{b'}>490, m_{ au'}>100.8,$	$m_{ u'}>80.5$	LHC, LEP

> Limit on t' mass

CDF Collaboration, T. Aaltonen *et al.*, (2011) 1107.3875. Assumes $t' \rightarrow Wb$, Ws, Wd, **but does not consider** $t' \rightarrow Wb'$ "...small mass splitting preferred ...such that $m_{b'} + M_W > m_{t'}$ "

Akın Wingerter, LPSC Grenoble Higgs Phys

Collider Limits on Fourth Generation Masses

≻ L	imits	from	theory	&	experiment
-----	-------	------	--------	---	------------

$\overline{m}_{t'} > 300,$	$\overline{m}_{b'}>300, \ \overline{m}_{ au'}>350,$	$\overline{m}_{ u'}>$ 350	Theory
$m_{t'} > 358,$	$m_{b'}>372, \ m_{ au'}>100.8,$	$m_{ u'} > 80.5$	Tevatron, LEP
$m_{t'} > 490,$	$m_{b'}>490, m_{ au'}>100.8,$	$m_{ u'} > 80.5$	LHC, LEP

Limit on b' mass

CDF Collaboration, T. Aaltonen *et al.*, *Phys. Rev. Lett.* **106** (2011) 141803, 1101.5728. Assumes branching ratio for $b' \rightarrow Wt$ to be 100%

C. J. Flacco, D. Whiteson, T. M. Tait, and S. Bar-Shalom, "Direct Mass Limits for Chiral Fourth-Generation Quarks in All Mixing Scenarios," *Phys.Rev.Lett.* **105** (2010) 111801, 1005.1077.

Bounds on $m_{b'}$ can be weakened by 10-20%

Collider Limits on Fourth Generation Masses

Limits from theory & experiment

$\overline{m}_{t'} > 300,$	$\overline{m}_{b'}>300, \ \overline{m}_{ au'}>350,$	$\overline{m}_{ u'}>$ 350	Theory
$m_{t'} > 358,$	$m_{b'}>372, \ m_{ au'}>100.8,$	$m_{ u'} > 80.5$	Tevatron, LEP
$m_{t'} > 490,$	$m_{b'}>490,\ m_{ au'}>100.8,$	$m_{ u'} > 80.5$	LHC, LEP

Most recent limits on t' and b' masses from CMS
 CMS Collaboration, CMS-PAS-EXD-11-054.
 Assumes that t' and b' are degenerate in mass

Akın Wingerter, LPSC Grenoble

Collider Limits on Fourth Generation Masses

Limits from theory & experiment

$\overline{m}_{t'} > 300,$	$\overline{m}_{b'}>300, \ \overline{m}_{ au'}>350,$	$\overline{m}_{ u'}>$ 350	Theory
$m_{t'} > 358,$	$m_{b'}>372, \ m_{ au'}>100.8,$	$m_{ u'} > 80.5$	Tevatron, LEP
$m_{t'} > 490,$	$m_{b'}>490,\ m_{ au'}>100.8,$	$m_{ u'} > 80.5$	LHC, LEP

Most recent limits on t' and b' masses from CMS
 CMS Collaboration, CMS-PAS-EXD-11-054.
 Assumes that t' and b' are degenerate in mass

Conclusions

- Derived Higgs mass bounds from stability & triviality
 - Higgs is between 200 and 700 GeV
 - Large difference between 1-loop and 2-loop analyses
 - Stronger bounds than from unitarity, EWP measurements
- Bounds on Higgs imply bounds on fourth generation fermions
 - Quark bounds are competitive with Tevatron limits
 - Lepton bounds are stronger than collider limits
 - Excluding Higgs lighter than 700 GeV kills fourth generation
- Assumptions in fourth generation quark searches need to be critically reviewed