Monotops at the Large Hadron Collider.

Benjamin Fuks (IPHC Strasbourg / Université de Strasbourg).

Based on arXiv:1106.6199 (accepted by PRD). With J. Andrea and F. Maltoni.

GDR Terascale Meeting @ CPPM. October 11-13, 2011. Monotop signatures

LHC sensitivity. 000000

Outline.

The bottom-up approach for new physics at the LHC.

Classifying Beyond the Standard Model theories.

• New physics theories.

- * There are a lot of different theories.
- * Based on very different ideas.
- * In evolution (especially regarding the discoveries [or exclusions!]).

• New physics theories can be classified into two main categories.

- * Built from a **top-down** approach.
- * Built from a **bottom-up** approach.

The top-down approach.

- Motivations.
 - * Theoretical ideas.
 - ► e.g., symmetry principles as for Grand Unified Theories.
 - * Addresses one or several issues of the Standard Model.
 - ► e.g., hierarchy problem as in Universal Extra Dimensional models.
 - * Predictions can be made through perturbation theory.
 - ► e.g., test at colliders.

Benchmark scenarios.

- * Many **new parameters** enter in new theories:
 - ► e.g., hundreds of parameters in supersymmetric models.
- * Experimental data constraints some of them.
 - ► e.g., electroweak precision observables.
- * Viable benchmark scenarios.

• Signatures at colliders.

- * Driven by the benchmark scenarios.
 - ▶ *e.g.*, same sign leptons \Leftrightarrow new Majorana state.

The top-down approach: limitations.

• Signatures at colliders.

- * Not typical from a given benchmark of a specific model.
 - ► Various benchmarks for gravity-mediated supersymmetry breaking.
- * Not typical from a **specific model**.
 - **Extra Dimensions and supersymmetry imply both cascade decays.**
- Theory and data.
 - * How to relate observations to a given model/benchmark?
 - * How to disentangle models and benchmarks?
- Bias in the expectations.
 - * Are we **missing** some signatures in those investigated?
 - ► Phenomenologically and experimentally.

The bottom-up approach: we start from a signature.

Outline.

The bottom-up approach for new physics at the LHC

Conclusions.

Monotop production at the LHC.

- Bottom-up approach: we propose a final state signature.
 One top quark in association with missing energy.
- Monotop production in the Standard Model.
 - * Loop-suppressed.
 - * CKM-suppressed.
 - * Representative Feynman diagram:

● Observing monotops at the LHC ⇔ Beyond the Standard Model physics.

Classes of models yielding monotop signatures (1).

• Main features of monotop signatures.

- * Final state flavor is fixed.
 - ◊ One top quark.
 - ◊ Missing energy.
 - ► Bosonic or fermionic state.
 - ► One particle or *n*-particle state.
 - ► Neutral, weakly-interacting, long-lived/stable/invisible.
- * Initial state possibilities are then reduced.
 - $\blacktriangleright Down-type antiquark pair \Rightarrow baryon-number-violating process.$
 - ► Up-type quark/gluon \Rightarrow flavor-changing process.
- * Enhanced coupling between the 3rd generation and the others.

S

♦ *SU*(5) theories ($V \equiv$ leptoquark and $\chi \equiv \nu$).

- $\chi \equiv$ composite state (*e.g.*, scalar + fermion).
 - ▶ [Davoudiasl, Morrisey, Sigurdson, Tulin, '11].
- $\Rightarrow \chi \equiv \text{spin-3/2 particle.}$
- ◊ etc...

χ

Toy scenarios I and II.

• Scenario I.

- * Standard Model plus one additional Majorana fermion χ .
- * One additional new colored scalar state φ .
- * Simplifications: no new pseudoscalar interactions.

$$\mathcal{L} = \epsilon^{ijk} \varphi_i \bar{d}_j^c \Big[a_{SR}^q \Big] d_k + \varphi_i \bar{u}^i \Big[a_{SR}^{1/2} \Big] \chi + \text{h.c.} \ .$$

 \Rightarrow Monotop resonant production (with a = 0.1).

• Scenario II.

- * Standard Model plus one additional Majorana fermion χ .
- * One additional new colored vector state X.
- Simplifications: no new pseudovector interactions.

$$\mathcal{L} = \epsilon^{ijk} X_{\mu,i} \ \bar{d}_j^c \Big[a_{VR}^q \gamma^\mu \Big] d_k + X_{\mu,i} \ \bar{u}^i \Big[a_{VR}^{1/2} \gamma^\mu \Big] \chi + \mathrm{h.c.} \ .$$

 \Rightarrow Monotop resonant production (with a = 0.1).

Classes of models yielding monotop signatures (3).

- Bosonic missing energy state (initial quark/gluon pairs).
 - * Flavor-changing interactions of the top quark.
 - ♦ With a charm or up quark.
 - ♦ With a new neutral scalar, vector or tensor field.

- * Concrete examples.
 - ◇ *R*-parity-conserving supersymmetry (two-particle missing energy).
 > $pp \rightarrow \tilde{q}\tilde{\chi}^0 \rightarrow t\tilde{\chi}^0\tilde{\chi}^0$: [Allanach, Grab, Haber, JHEP '11].
 - ♦ Anomalous Z q q' interactions.
 - ▶ [del Aguila, Aguilar-Saavedra, Ametller, PLB '99].
 - ♦ Flavor-violating graviton couplings.
 - ▶ [Degrassi, Gabrielli, Trentadue, PRD '09].
 - ◊ etc...

Toy scenarios III and IV.

• Scenario III.

- * Standard Model plus one additional real scalar ϕ .
- * Simplifications: no new pseudoscalar interactions.

$$\mathcal{L} = \phi \bar{u} \left[a_{FC}^{0} \right] u + \text{h.c.} \ .$$

 \Rightarrow Flavor-changing monotop production (with a = 0.1).

Scenario IV.

- * Standard Model plus one real vector field V.
- * Simplifications: no new pseudovector interactions.

$$\mathcal{L} = V_{\mu} \bar{u} \Big[a_{FC}^1 \gamma^{\mu} \Big] u + ext{h.c.} \; .$$

 \Rightarrow Flavor-changing monotop production (with a = 0.1).

Classes of models yielding monotop signatures (4).

- Fermionic missing energy state χ .
 - * Four-fermion interactions.

- * Concrete examples.
 - ♦ **From** $SU(2) \times SU(2)$.
 - ►[Morrisey, Tait, Wagner, PRD '05].
 - ♦ Model-independent study.
 - ▶ [Dong, Durieux, Gerard, Han, Maltoni, '11].

LHC sensitivity. 000000

Toy scenario V.

Scenario V. * Standard Model plus one additional Majorana fermion χ . * Modeling through *s*, *t*, *u* exchanges of very heavy scalars. * Simplifications: no new pseudoscalar interactions. $\mathcal{L} = \epsilon^{ijk}\varphi_i \bar{d}_j^c \Big[a_{SR}^q\Big] d_k + \varphi_i \bar{u}^i \Big[a_{SR}^{1/2}\Big] \chi + \epsilon^{ijk} \tilde{\varphi}_i \bar{d}_j^c \Big[\tilde{a}_{SR}^q\Big] u_k + \tilde{\varphi}_i \bar{d}^i \Big[\tilde{a}_{SR}^{1/2}\Big] \chi + h.c.$

(with $a = \tilde{a} = 0.1$).

Outline.

The bottom-up approach for new physics at the LHC

2 Monotop signatures at the LHC.

Monotops at the LHC.

Benjamin Fuks - GDR Terascale @ Marseille - 11.10.2011 - 16

Signal and background descriptions.

• Signal.

- * Leptonic top decay.
 - \diamond Signature: 1 lepton + 1 b jet + missing energy.
 - ♦ No top mass reconstruction.
 - $\diamond \text{ More challenging} \Rightarrow \text{not considered}.$
- * Hadronic top decay.
 - ◊ Signature: 2 light jets + 1 b jet + missing energy.
 - ♦ The top is fully reconstructed.

• Sources of background.

- * $Z (\rightarrow \nu \bar{\nu}) + 3$ jets.
 - ►Irreducible background.
- * QCD multijet.
 - $\blacktriangleright \mbox{Misreconstructed}$ jet \rightarrow fake missing energy.
- * W + jets, $t\bar{t}$ and diboson.
 - ▶ Missing energy: leptonic W decay with nonreconstructed lepton.
- * Single top.
 - ►Non- or misreconstructed leptons.

Background rejection (1).

- A proper analysis requires:
 - * Parton showering.
 - * Hadronization.
 - * A proper detector simulation.
 - * Data-driven methods for background estimation.
- We rely on existing experimental studies.

[Disclaimer: this is a prospective study].

- * CMS: CERN-PH-EP-2011-065.
- * ATLAS: PLB 701 (2011) 186.
- First set of selection cuts.
 - * Large missing transverse momentum ($p_{\tau} > 150$ GeV).
 - * $p_T(jet) > 50$ GeV for three high quality jets.
 - * H_T (jet) > 300 GeV.
 - \Rightarrow comparable amount of QCD, $t\bar{t}$, Z and W events.
 - \Rightarrow diboson and single top highly reduced.

Background rejection (2).

• Second set of selection cuts: exploiting the presence of a top quark.

- * Exactly three jets.
- * Lepton veto.
- * One b-tagged jet.
- * Three-jet invariant mass compatible with the top mass.
- * Two non-*b*-jet invariant mass compatible with the *W* mass.
- \Rightarrow all instrumental backgrounds are expected to be highly suppressed.
- \Rightarrow the only considered source of background consists in $Z(\rightarrow \nu \bar{\nu}) + 3$ jets.

Remainder.

- This is a prospective study.
- Promising results \Rightarrow motivation for a more complete study.
 - ▶ Parton showering & hadronization.
 - ► Detector simulation.

Monotop signature

LHC sensitivity.

Missing transverse momentum distribution.

- Our selection cuts.
 - Exactly 3 parton-level jets.
 - ▶ $p_T > 50$ GeV; $|\eta| < 2.5$.
 - $\blacktriangleright \Delta R(\text{jet,jet}) > 0.5.$
- Resonant behavior.
 - ►Scenarios I and II.
 - ► Spectra with an edge.
 - Depends on the invisible mass.
- Flavor-changing production modes.
 - ► Scenarios III and IV.
 - ► Flatter spectra.
 - **Peak at high** p_T -value.
- Four-fermion interactions.
 - ►Scenario V.
 - ► Monotonically growing spectrum.

 $\label{eq:simple} \begin{array}{l} \mbox{Simple cuts} \Rightarrow \mbox{Reject the major} \\ \mbox{background contributions}. \end{array}$

Monotop signature

LHC sensitivity.

LHC sensitivity to monotop signatures at 1 fb⁻¹.

- Additional cuts.
 - $\blacktriangleright p_T > 150 \text{ GeV}.$
 - ►One *b*-tag
 - ►No isolated leptons.
 - ► $M_{jj} \in [m_w 20, m_w + 20]$ GeV.
 - ► $M_{bjj} \in [m_t 30, m_t + 30]$ GeV.

Efficiencies.

- ► b-tagging: 60%.
- ► c-mistagging: 10%.
- ▶light jet-mistagging: 1%.
- Resolution \Rightarrow smearing.
- Results.
 - Flavor-changing modes more optimistic (cf. parton densities).
 - Resonant modes depend on the resonance mass.
 - ► Fairly large invisible mass reachable.

Outline.

The bottom-up approach for new physics at the LHC

2 Monotop signatures at the LHC.

3 LHC sensitivity to monotops.

Conclusions.

- We have investigated monotop production at the LHC.
 - * One hadronic top quark.
 - * Missing energy.
- Simplified effective theory approach.
- Basic selection cuts were performed.
 - * The LHC can probe fairly large missing mass.
 - * The LHC can constrain the coupling strengths.
 - * The results are encouraging.
 - * We need furter studies to understand the instrumental backgrounds.

Further studies.

- ► More complete simulation.
- ► More advanced analysis techniques.
- ► CMS and CDF analyses are on their way.