Spinning the Top

Adam Falkowski LPT Orsay

Marseille, le 11 Octobre 2011

based on work with Gilad Perez and Martin Schmaltz, arXiv 1110.xxxx

Top quark is interesting because:

- Its mass is of the order of the electroweak scale, so there are reasons it may couple strongly to the new physics sector that breaks the electroweak symmetry
- $\Gamma_t \gg \Lambda_{\text{QCD}},$ thus top decays before hadronization effects could randomize its polarization
- The anomalous $t\bar{t}$ forward-backward asymmetry is currently the **only** serious hint of new physics at the weak scale

Polarization and charged leptons

- Charged lepton from top decay is perfect analyzer of top spin
- More precisely, amplitude square for top decay after averaging over spins of decay products:

$$\sum_{s_f} |\mathcal{M}|^2 = \frac{2g^4}{(2k_l \cdot k_n - m_W^2)^2 + m_W^2 \Gamma_W^2} (k_b \cdot k_n) \left[\bar{\mathbf{x}}(k_t, \mathbf{s_t}) k_l \cdot \bar{\sigma} \, \mathbf{x}(k_t, \mathbf{s_t}) \right]$$

leading to $\sum_{s_f} |\mathcal{M}|^2 \sim (1 + \cos \theta)$ where θ is angle between lepton momentum and top spin in top rest frame

• Define charged lepton forward-backward asymmetry

$$A_{FB}^{l+} = \frac{N_{l+}(\cos\theta > 0) - N_{l+}(\cos\theta < 0)}{N_{l+}(\cos\theta > 0) + N_{l+}(\cos\theta < 0)} \quad A_{FB}^{l-} = \frac{N_{l-}(\cos\theta > 0) - N_{l-}(\cos\theta < 0)}{N_{l-}(\cos\theta > 0) + N_{l-}(\cos\theta < 0)}$$

• For completely top $A_{l+} = +50\%$ and for polarized antitops $A_{l-} = -50\%$

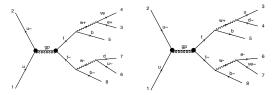
$$A_{FB}^{\prime} = \frac{N_{l}(q_{l}\cos\theta > 0) - N_{l}(q_{l}\cos\theta < 0)}{N_{l}(\cos\theta > 0) + N_{l}(\cos\theta < 0)}$$

- Huge literature on the subject, in particular on SM tests, sensitivity to new physics, spin correlations, stability wrt QCD corrections
- We're adding a simple observation; so intuitive that you'll probably say you have known that before
- But, as far as i know, never explicitly pointed out in a theory paper, and definitely no experimental results out there yet

IDEA: Look at the forward-backward lepton asymmetry at the $t\bar{t}$ threshold

- At threshold, tops have zero momentum → they don't have angular momentum (neither has the beam)
- Thus, the sum of the spins of top and anti-top along beam directions equals the sum of the spins of the colliding light quarks
 - For events initiated by $q_R \bar{q}_R$, both t and \bar{t} have spins aligned with the quark beam, leading to $A_l = +50\%$.
 - For events initiated by $q_L \bar{q}_L$, both t and \bar{t} have spins anti-aligned with the quark beam, leading to $A_l = -50\%$.
- Therefore measuring A'_{FB} at threshold tells us the proportions of $q_R \bar{q}_R$ and $q_L \bar{q}_L$ that produce $t\bar{t}$ at threshold

- Simple and clean experimental observable
- Independent from inclusive lepton asymmetry and from $t\bar{t}$ forward-backward asymmetry. Easy to construct models where those have opposite signs from threshold lepton asymmetry.
- Different from spin correlations. In fact, C = +1 for both $q_R \bar{q}_R$ and $q_L \bar{q}_L$ initiated top pairs.
- (Unlike spin correlations that needs either dileptonic decay or identifying d-quark jet in the other top) applies separately to top and anti-top decay products.
- New physics addressing anomalous top FB asymmetry requires new particles with **chiral** couplings to not only to top but **also to light quarks**


Caveat: Below, only TREE-LEVEL results. At the moment we don't know how this observable is affected by NLO QCD corrections (but in the inclusive case they do not change the picture dramatically Bernreuther,Si,Uwer [1003.3926])

Toy Model: χ QCD

- Toy model to distil the effect : Chiral QCD
- Massless chiral gluon with general chiral couplings to quarks:

 $G^{a}_{\mu}\bar{q}\bar{\sigma}^{\mu}T^{a}(g_{q_{R}}P_{R}+g_{q_{L}}P_{L})q+G^{a}_{\mu}\bar{t}\bar{\sigma}^{\mu}T^{a}(g_{t_{R}}P_{R}+g_{t_{L}}P_{L})t$

• Consider the process $q\bar{q} \rightarrow t\bar{t} \rightarrow l\nu jj$ at fixed CM energy \sqrt{s} (QLC = Quark Linear Collider :-)

• Consider spin amplitudes with the spin quantization axis along the beam direction

$$\mathcal{M}(q_i ar{q}_j
ightarrow t_k ar{t}_l) = \left(\delta_{ik} \delta_{jl} - rac{1}{3} \delta_{ij} \delta_{kl}
ight) \mathcal{F}(s_q, s_{ar{q}} | s_t, s_{ar{t}})$$

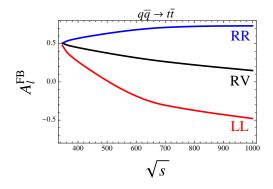
At the threshold only 2 spin-amplitudes non-zero

$$F(+,+|+,+) = -\frac{g_{q_R}(g_{t_L} + g_{t_R})}{2} \qquad F(-,-|-,-) = -\frac{g_{q_L}(g_{t_L} + g_{t_R})}{2}$$

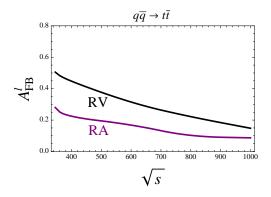

- Only (++) top spin state is possible if chiral gluon couples only to *right-handed* light quarks
- Only (- -) top spin state is possible if chiral gluon couples only to *left-handed* light quarks

Consider the lepton asymmetry

$$\mathcal{A}_{FB}^{l} = rac{N_{l}(q_{l}\cos heta > 0) - N_{l}(q_{l}\cos heta < 0)}{N_{l}(\cos heta > 0) + N_{l}(\cos heta < 0)}$$


as a function of $t \overline{t}$ invariant mass $m_{tt} = \sqrt{s}$

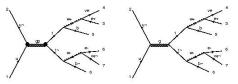
Toy model: RV case



- Assume gluon coupling only to right-handed up quarks: $G^a_\mu \bar{u} \bar{\sigma}^\mu T^a P_R u$
- Assume vector coupling of the gluon to the top: $G^a_\mu \bar{t} \bar{\sigma}^\mu T^a t$
- Tops produced only by $q_R \bar{q}_R$, thus at threshold, $A'_{FB} = 50\%$.
- Small effect of cutting on lepton rapidity $|\eta| <$ 2 negligible (dashed line)
- At higher \sqrt{s} tops not at rest \rightarrow have angular momentum \rightarrow spin of the tops no more along the beam \rightarrow lepton asymmetry different than 50%
- At very high \sqrt{s} lepton asymmetry approaches the $t\bar{t}$ asymmetry
- Note A'_{FB} is independent of A_{tt}^{FB} ; the latter is **zero** in this case for any \sqrt{s}

Independence of top coupling

- Varied gluon coupling to the top: $G^a_\mu \bar{t} \bar{\sigma}^\mu T^a P_X t$
- At the threshold, lepton asymmetry independent of the coupling to the top, in agreement with theoretical arguments
- At higher m_{tt} , lepton asymmetry inherits from the $t\bar{t}$ asymmetry
- Inclusive asymmetry for left-handed top couplings only 9%. One can easily miss the effect by looking inclusively!


- Axial gluon coupling to the top: $G^a_\mu \bar{t} \bar{\sigma}^\mu T^a \gamma_5 t$
- At the threshold, lepton asymmetry different than in the vector case, contrary to the theoretical arguments
- That's because for axial couplings to the top, the $t\bar{t}$ production amplitude completely vanishes at the threshold Then amplitude dominated by higher order terms in β_{top} and the ++ spin state is less dominant

- Currently most exciting examples are those producing a large $t\bar{t}$ forward-backward asymmetry without screwing up the top quark cross section and its other measured properties
- Many models on the market:
 - Heavy axigluon (> 1 TeV) with flavor non-universal large chiral couplings to light and top quarks in s-channel
 - Light axigluon (< 450 GeV) with flavor universal moderate chiral couplings to light and top quarks in s-channel
 - Light (complex) Z' vector boson with flavor violating coupling to up and top quarks in t-channel
 - Light electroweak doublet scalar with flavor violating coupling to up and top quarks in t-channel

• . . .

 Model specific prediction for inclusive lepton asymmetry which provides a handle to distinguish between different competing models Krohn,Liu,Shelton,Wang [1105.3743]

Light Axigluon Model

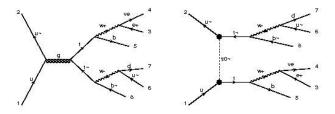
QCD + $G_{\mu}^{'a}[\bar{q}\bar{\sigma}^{\mu}T^{a}(g_{q_{R}}P_{R} + g_{q_{L}}P_{L})q + \bar{t}\bar{\sigma}^{\mu}T^{a}(g_{t_{R}}P_{R} + g_{t_{L}}P_{L})t]$ 3 benchmarks with $m_{G'} = 300$ GeV, $\Gamma_{G'} = 100$ GeV predicting $\Delta A_{t\bar{t}}^{FB} \approx 15\%$ in agreement with D0/CDF and without violating all other constraints

• AxR:
$$g_{q,R} = g_{t,R} = 0.8g_s$$
, $g_{q,L} = g_{t,L} = 0$

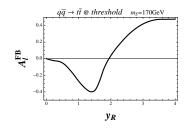
• AxL:
$$g_{q,R} = g_{t,R} = 0$$
, $g_{q,L} = g_{t,L} = 0.8g_s$

• AxA: $g_{q,R} = g_{t,R} = 0.4g_s$, $g_{q,L} = g_{t,L} = -0.4g_s$

Threshold lepton asymmetry at Tevatron


Benchmark	$A_{FB}^{\prime}(\sqrt{s} < 375 { m GeV})$	$A_{FB}^{\prime}(\sqrt{s} < 450{ m GeV})$	A'_{FB} inclusive
AxR	19 %	19 %	19 %
AxL	-15 %	-12 %	-8 %
AxA	2 %	4 %	7 %
tt fraction	20 %	60 %	100 %

- Inclusive lepton asymmetry provides discriminating power between benchmarks, as noticed by Krohn et al.
- But stronger discrimination by looking at A_{FB}^{l} near the threshold


• Saavedra, Perez-Victoria [1107.0841] : another possible model, weak doublet color singlet $S = (S_+, S_0)$ coupled as

 $y_R u^c Q_3 S + h.c.$ $Q_3 = (t, b)$

- t-channel scalar exchange contributes to $t\bar{t}$ production,
- Positive contributions to forward-backward top asymmetry, and constraints OK for $m_S \sim m_{top}$ and $y_R \sim 1$
- New twist here because of destructive interference with QCD

Light Scalar Doublet

- Even though S couples to right-handed up quarks, threshold lepton asymmetry is negative for moderate y_R
- This is because the color-octet part of the scalar exchange amplitude interferes *destructively* with the QCD amplitude, thus it may suppress the $u_R \bar{u}_R$ contribution wrt to $u_L \bar{u}_L$
- For very large y_R the scalar exchange swamps QCD and one gets positive threshold lepton asymmetry

Benchmark $m_S = 170$ GeV and $y_R = 1.5$ leading to $\Delta A_{FB}^{tt} \approx 5\%$. Threshold lepton asymmetry at Tevatron

Benchmark	$A'_{FB}(\sqrt{s} < 375 \mathrm{GeV})$	$A_{FB}^{\prime}(\sqrt{s} < 450{ m GeV})$	A'_{FB} inclusive
SdR	- 7%	- 6 %	-3 %
$t\bar{t}$ fraction	20 %	60 %	100 %

- We propose to measure the lepton asymmetry A_{FB}^{l} in $t\bar{t}$ events at the production threshold
- Simple and clean observable, with a simple and intuitive theoretical interpretation
- Applies separately to top and anti-top decay products, in semileptonic or dileptonic channel
- This observable is a direct measure of the polarization of the *light quarks* that produce the tops
- It's zero in the SM at tree-level, but is non-zero in many new physics model addressing the anomalous forward-backward $t\bar{t}$ asymmetry
- Of course, even more information if statistics and systematics allow us to measure the full dA_{FB}^I/dm_{tt} distribution