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We discuss a five dimensional N = 1 supersymmetric model compactified
on the S!/Z, orbifold to test effects of extra-dimension on the quark
Yukawa couplings and the CKM matrix observables.
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Different possibilities for the matter fields are discussed, where they are in
the bulk or localised to the brane. The two possibilities give rise to quite
different behaviours.

(B-function can be derived more easily in the superfield formalism.



orbifold & brane

» To recover MSSM at low energy, we need chiral zero modes for fermions
so we compactify the fifth dimention on the orbifold S /Z,.
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orbifold & brane

» To recover MSSM at low energy, we need chiral zero modes for fermions
so we compactify the fifth dimention on the orbifold S /Z,.

> Z, symmetry identifies y — —y and we have two orbifold fixed points
invariant under Z, called branes.
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» Described by a 5D NV = 1 vector supermultiplet which consists (on-shell)
of a 5D vector field AM, a real scalar S and two gauginos A and \’.

» 5D A = 1 supersymmetric action :

1 1 -
S, = / dsngzTr [—ZFMNFMN — DMSDyS — iATMDy A

SIXTYDy N + (N + XIS, A+ N]
Dy = Oy + iAy and T = (y#,i7%). FMY = —Z[DM, DV] and k
normalises the trace over the generators of the gauge groups.
» Decomposition of the 5D supercharge (which is a Dirac spinor) into

two Majorana-type supercharges which constitute a A/ = 2 superalgebra in
4D.
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» One can rearrange these fields in terms of a N' = 2 4D vector
supermultiplet, O = (V, x) :
e V: N =1 vector supermultiplet containing A* and \.
e x : NV = 1 chiral supermultiplet containing \’ and §’ = S + iA>.
» 4D N =1 action :
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S, = /d xd*0d 9—4kg2Tr [4(W Wad(07) + h.c)+ (e7 " Vye™") ]

we = — %Eze*%’ VD, e*". D, is the covariant derivative in the 4AD N = 1
superspace and V, = 0, + x.

» Action of Matter sector and its coupling to gauge sector :
S = [ d5xd20d’g [5e2gv¢ + 028V 4 (0°(Vs + m)d3(F°) + h.c)]



Fields

» The x-field should be odd under Z, symmetry because it appears togother
with a derivative 0,, whereas V is even.
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Fields

» The x-field should be odd under Z, symmetry because it appears togother
with a derivative 0,, whereas V is even.

» For the two matter superfields, we choose ® to be even and the conjugate
®° to be odd. Only the even fields have zero modes.

» The Fourier decomposition of the fields :

Viz.y) = \i—}? ‘[,--101'(” 4 \/EZ V®)(z) cos (%)
N n>l
Higl = 1\'! 7R Z x'"(z) sin (L;:)
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Low energy spectrum

» At energies well below the scale R~!, where the massive Kaluza-Klein
states decouple, only the zero modes remain in the spectrum and we
assume that physics is described by the usual MSSM.

» The matter superfields (and Higgs superfields) of the MSSM will be
identified with a ®° superfield and the gauge fields with a V° mode.

» Brane interactions contain Yukawa-type couplings :

1~ _
Shrane = /dgzdyé(y) |:(6)\Uk¢l¢]¢k + )5(9) + h.c.
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Equations of gauge couplings

» The evolution of g; in 4D :

16772@

big®
dt 8

in 4D MSSM b; read (by, ba, b3) = (2,1, -3)

» If we consider our 5D theory as effective up to a scale A, then between the
compactification scale R~ (first KK states are excited) and the cut-off
scale A\, there are finite quantum corrections from the AR number of KK
states.

» As aresult, once the KK states are excited, these couplings exhibit power
law dependencies on A.

B — B 4 (S(p) — 1) B

B is a generic contribution from a single KK level. S(1) = uR.
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Gauge couplings

> We use d(In ) = dt, for = Mze' where My is the renormalisation
point, and S(1) = ¢'MzR.

» In terms of the scale parameter ¢ :

dg; N
16w2d—‘i = [bi+(S(t) — 1)b]g?

> (51752553) - (g* _21 _6) + 4’7]’
7 represents the number of generations of fermions in the bulk.



Gauge couplings

v

We use d(In 37-) = dt, for j1 = Mze' where Mz is the renormalisation

point, and S(¢) = ¢'MyR.

» In terms of the scale parameter ¢ :

dg; N
16w2d—‘i = [bi+(S(t) — 1)b]g?

v

(51,132,1;3) = (g —2, —6) + 47];

7 represents the number of generations of fermions in the bulk.
If all fields propagating in the bulk, i.e. 7 = 3, b; = (%,10,6)
For all fields on the brane, i.e. n = 0, b; = (g, —2,-6)

v



Gauge couplings as a function of the scale parameter ¢

g1, &, g3 for 3 different values of the compactification scales : 2 TeV (solid
line), 8 TeV (dot-dashed line), 15 TeV (dashed line)
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One-loop diagrams

a n (0 b n c) 0(0)
\\\‘/ /, ( )
n (0,n) n 0 (0)
d) 0(0) e) m
n (n) n

> The one-loop diagrams related to the wave-function renormalisation of
the matter superfields, in which Figs.a-e refer to the case where all the
matter fields are in the bulk, and the excited KK states are labeled by the
number without the bracket ; whereas Figs.a,c,d are related to the brane
localised matter fields case, in which the KK states are labeled by the
number inside the bracket.



RGE in 5D MSSM for 3 generations propagating in the bulk
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RGE in 5D MSSM for 3 generations propagating in the bulk

dy, i
16778 = Yy(Tr(Y)Ya) + Tr(¥[Y.) + 3] ¥y + Y[V, )mS (1)
7 16
— Yd<15g1+382+383)5()
2dY, t t t 2
tor’ =% = Y,(3Tr(Y[Y.) +3Y]Y, + YjYa)mS(1)

13 16
- Y (1581+382 3g§>S(I)

» WhenE < 1/Rort < ln(M¥) B-functions become those for the usual 4D
MSSM.



RGE on the brane

dy,
16m =% = Ya(3Tr(Yj¥a) + Tr(Y]¥e) + (6Y]Ya +2Y[Y,)S(1))
9, 9, 32
- Yd(30 git 38+ 38 )S(I)v
deu + 1 T
16m> = = Y.(3Tr(Y[Y.) + (6Y[Y, +2Y]Y)S(1))

Y., 43 +9 +¥ S(1)
3081 &2 38

» We also found the RGE for leptonic sector 167r2 dY < = .... refer to the paper.
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» The square of the quark Yukawa coupling matrices can be diagonalized by
using two unitary matrices U and V :
diag (f2./2,f2) = UY}Y,U" s diag (W3, 12, 13) = VY}¥, V'

» CKM matrix appears as a result of the transition from the quark flavor
eigenstates to the quark mass eigenstates : Vegy = UV

» We obtain after calculation in the bulk case :
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» Variation of CKM matrix and its evolution equation when the energy scale
is beyond the threshold R~ :

dVi A+ . h: + h2
16m <% = rs? Zfz ]gzh;vlmvjm i + Z Vi VicVin
myjAit Js m;ék m
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CKM matrix (brane case)

>
dei2 2 2 2 2
tor’=r = (T~ Gu) + 125 +48) w7,
J
16 2dh12 _ 2 2 2 2
L = W2(Ts — Ga) + 125K + 45 f2|Vy[’]
1

> Ty =3Tr(Y)Yy) + Tr(YiY,),Ga = (8¢ + 265 + 243) S(1),
T, =3Tr(Y}Y,),G, = (881 + 385 + £43) S(1).

» The evolution equation of CKM matrix elements on the brane :

dv: 12+ 17 h2 + hZ

2 ik i J 12 * k m g2y 7%

167 g 28 E :fz _fzhmvimvjmvjk + E : h% _ hzﬁ' Vim Vi Vi
mj#it i Jm#k "



Top Yukawa for R=! :2 TeV (dotted line), 8 TeV

(dot-dashed line),

Runnings of f; for tanS=1
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Vus for R~! :2 TeV (dotted line), 8 TeV (dot-dashed line),
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Runnings of |Vys| for tanf=30
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Jarlskog Parameter for R=! :2 TeV (dotted line), 8 TeV
(dot-dashed line),
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Conclusion

» In the first case, all matter superfields are allowed to propagate in the fifth
dimension whereas in the second they are restricted to the brane.

» In the bulk case, there is a quadratic running for yukawa couplings. y;
becomes non-perturbative already at rather low energies. This strongly
limits the range of validity of the model.

» In the brane case, the dependence on the energy scale is only linear and
Yukawa couplings remain perturbative until gauge coupling unification.

» In the numerical analysis of the evolution of the CKM parameters, both
cases give us a scenario with
small or no quark flavour mixings at high energies.

» In the universal 5D MSSM model, the evolution of these CKM parameters
have a rapid variation till reaching a cut-off scale where the top Yukawa
coupling develops a singularity point and the model breaks down.
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