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Introduction

I We discuss a five dimensional N = 1 supersymmetric model compactified
on the S1/Z2 orbifold to test effects of extra-dimension on the quark
Yukawa couplings and the CKM matrix observables.

I

VCKM =

 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


I Different possibilities for the matter fields are discussed, where they are in

the bulk or localised to the brane. The two possibilities give rise to quite
different behaviours.

I β-function can be derived more easily in the superfield formalism.
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orbifold & brane

I To recover MSSM at low energy, we need chiral zero modes for fermions
so we compactify the fifth dimention on the orbifold S1/Z2.

I Z2 symmetry identifies y → −y and we have two orbifold fixed points
invariant under Z2 called branes.
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5D MSSM (gauge sector)

I Described by a 5D N = 1 vector supermultiplet which consists (on-shell)
of a 5D vector field AM , a real scalar S and two gauginos λ and λ′.

I 5D N = 1 supersymmetric action :

Sg =

∫
d5x

1
2kg2 Tr

[
−1

2
FMNFMN − DMSDMS− iλΓMDMλ

- iλ
′
ΓMDMλ′ + (λ + λ

′
)[S, λ + λ′]

DM = ∂M + iAM and ΓM = (γµ, iγ5). FMN = − i
g [DM, DN ] and k

normalises the trace over the generators of the gauge groups.
I Decomposition of the 5D supercharge (which is a Dirac spinor) into

two Majorana-type supercharges which constitute a N = 2 superalgebra in
4D.
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5D MSSM

I One can rearrange these fields in terms of a N = 2 4D vector
supermultiplet, Ω = (V , χ) :
• V : N = 1 vector supermultiplet containing Aµ and λ.
• χ : N = 1 chiral supermultiplet containing λ′ and S′ = S + iA5.

I 4D N = 1 action :

Sg =

∫
d5xd2θd2θ

1
4kg2 Tr

[
1
4
(WαWαδ(θ

2
) + h.c) + (e−2gV∇ye2gV)2

]
Wα = − 1

4 D
2
e−2gVDαe2gV . Dα is the covariant derivative in the 4D N = 1

superspace and ∇y = ∂y + χ.
I Action of Matter sector and its coupling to gauge sector :

S =
∫

d5xd2θd2θ
[
Φe2gVΦ + Φce−2gVΦ

c
+ (Φc(∇5 + m)Φδ(θ

2
) + h.c)

]
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Fields

I The χ-field should be odd under Z2 symmetry because it appears togother
with a derivative ∂y, whereas V is even.

I For the two matter superfields, we choose Φ to be even and the conjugate
Φc to be odd. Only the even fields have zero modes.

I The Fourier decomposition of the fields :
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Low energy spectrum

I At energies well below the scale R−1, where the massive Kaluza-Klein
states decouple, only the zero modes remain in the spectrum and we
assume that physics is described by the usual MSSM.

I The matter superfields (and Higgs superfields) of the MSSM will be
identified with a Φ0 superfield and the gauge fields with a V0 mode.

I Brane interactions contain Yukawa-type couplings :

Sbrane =

∫
d8zdyδ(y)

[
(

1
6
λ̃ijkΦiΦjΦk + ..)δ(θ) + h.c.

]
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Equations of gauge couplings

I The evolution of gi in 4D :

16π2 dgi

dt
= bigi

3

in 4D MSSM bi read (b1, b2, b3) = ( 33
5 , 1,−3)

I If we consider our 5D theory as effective up to a scale Λ, then between the
compactification scale R−1 (first KK states are excited) and the cut-off
scale Λ, there are finite quantum corrections from the ΛR number of KK
states.

I As a result, once the KK states are excited, these couplings exhibit power
law dependencies on Λ.

β4D → β4D + (S(µ)− 1) β̃

β̃ is a generic contribution from a single KK level. S(µ) = µR.
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Gauge couplings

I We use d(ln µ
MZ

) = dt, for µ = MZet where MZ is the renormalisation
point, and S(t) = etMZR.

I In terms of the scale parameter t :

16π2 dgi

dt
= [bi + (S(t)− 1)b̃i]gi

3

I (b̃1, b̃2, b̃3) = ( 6
5 ,−2,−6) + 4η ;

η represents the number of generations of fermions in the bulk.
I If all fields propagating in the bulk, i.e. η = 3, b̃i = ( 66

5 , 10, 6)

For all fields on the brane, i.e. η = 0, b̃i = ( 6
5 ,−2,−6)
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Gauge couplings as a function of the scale parameter t

g1, g2, g3 for 3 different values of the compactification scales : 2 TeV (solid
line), 8 TeV (dot-dashed line), 15 TeV (dashed line)
bulk

brane



One-loop diagrams

I The one-loop diagrams related to the wave-function renormalisation of
the matter superfields, in which Figs.a-e refer to the case where all the
matter fields are in the bulk, and the excited KK states are labeled by the
number without the bracket ; whereas Figs.a,c,d are related to the brane
localised matter fields case, in which the KK states are labeled by the
number inside the bracket.
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RGE in 5D MSSM for 3 generations propagating in the bulk

I

16π2 dYd

dt
= Yd(3Tr(Y†

d Yd) + Tr(Y†
e Ye) + 3Y†

d Yd + Y†
u Yu)πS(t)2

− Yd

(
7
15

g2
1 + 3g2

2 +
16
3

g2
3

)
S(t),

16π2 dYu

dt
= Yu(3Tr(Y†

u Yu) + 3Y†
u Yu + Y†

d Yd)πS(t)2

− Yu

(
13
15

g2
1 + 3g2

2 +
16
3

g2
3

)
S(t)

I When E < 1/R or t < ln( 1
MZR ) β-functions become those for the usual 4D

MSSM.
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RGE on the brane

I

16π2 dYd

dt
= Yd(3Tr(Y†

d Yd) + Tr(Y†
e Ye) + (6Y†

d Yd + 2Y†
u Yu)S(t))

− Yd

(
19
30

g2
1 +

9
2

g2
2 +

32
3

g2
3

)
S(t) ,

16π2 dYu

dt
= Yu(3Tr(Y†

u Yu) + (6Y†
u Yu + 2Y†

d Yd)S(t))

− Yu

(
43
30

g2
1 +

9
2

g2
2 +

32
3

g2
3

)
S(t)

I We also found the RGE for leptonic sector 16π2 dYe
dt = .... refer to the paper.



CKM matrix (bulk case)

I The square of the quark Yukawa coupling matrices can be diagonalized by
using two unitary matrices U and V :
diag

(
f 2
u , f 2

c , f 2
t

)
= UY†

u YuU† ; diag
(
h2

d, h2
s , h2

b

)
= VY†

d YdV†

I CKM matrix appears as a result of the transition from the quark flavor
eigenstates to the quark mass eigenstates : VCKM = UV†

I We obtain after calculation in the bulk case :

16π2 df 2
i

dt
= f 2

i [2(TuπS2 − Gu) + 6πS2f 2
i + 2πS2

∑
j

h2
j |Vij|2]

16π2 dh2
j

dt
= h2

j [2(TdπS2 − Gd) + 6πS2h2
j + 2πS2

∑
i

f 2
i |Vij|2]

I Variation of CKM matrix and its evolution equation when the energy scale
is beyond the threshold R−1 :

16π2 dVik

dt
= πS2

∑
m,j6=i

f 2
i + f 2

j

f 2
i − f 2

j
h2

mVimV∗
jmVjk +

∑
j,m 6=k

h2
k + h2

m

h2
k − h2

m
f 2
j V∗

jmVjkVim
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h2
j |Vij|2] ,

16π2 dh2
j

dt
= h2

j [2(Td − Gd) + 12Sh2
j + 4S

∑
i

f 2
i |Vij|2]

I Td = 3Tr(Y†
d Yd) + Tr(Y†

e Ye), Gd =
( 19

30 g2
1 + 9

2 g2
2 + 32

3 g2
3

)
S(t),

Tu = 3Tr(Y†
u Yu), Gu =

( 43
30 g2

1 + 9
2 g2

2 + 32
3 g2

3

)
S(t).
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h2
j |Vij|2] ,

16π2 dh2
j

dt
= h2

j [2(Td − Gd) + 12Sh2
j + 4S

∑
i

f 2
i |Vij|2]

I Td = 3Tr(Y†
d Yd) + Tr(Y†

e Ye), Gd =
( 19

30 g2
1 + 9

2 g2
2 + 32

3 g2
3

)
S(t),

Tu = 3Tr(Y†
u Yu), Gu =

( 43
30 g2

1 + 9
2 g2

2 + 32
3 g2

3

)
S(t).

I The evolution equation of CKM matrix elements on the brane :

16π2 dVik

dt
= 2S

∑
m,j6=i

f 2
i + f 2

j

f 2
i − f 2

j
h2

mVimV∗
jmVjk +

∑
j,m 6=k

h2
k + h2

m

h2
k − h2

m
f 2
j V∗

jmVjkVim





Top Yukawa for R−1 :2 TeV (dotted line), 8 TeV
(dot-dashed line), 15 TeV (dashed line)

bulk

brane



Vus for R−1 :2 TeV (dotted line), 8 TeV (dot-dashed line),
15 TeV (dashed line)

bulk

brane



Jarlskog Parameter for R−1 :2 TeV (dotted line), 8 TeV
(dot-dashed line), 15 TeV (dashed line)

bulk

brane



Conclusion

I In the first case, all matter superfields are allowed to propagate in the fifth
dimension whereas in the second they are restricted to the brane.

I In the bulk case, there is a quadratic running for yukawa couplings. yt

becomes non-perturbative already at rather low energies. This strongly
limits the range of validity of the model.

I In the brane case, the dependence on the energy scale is only linear and
Yukawa couplings remain perturbative until gauge coupling unification.

I In the numerical analysis of the evolution of the CKM parameters, both
cases give us a scenario with
small or no quark flavour mixings at high energies.

I In the universal 5D MSSM model, the evolution of these CKM parameters
have a rapid variation till reaching a cut-off scale where the top Yukawa
coupling develops a singularity point and the model breaks down.
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