

ttbar Asymmetry at Tevatron and LHC

Frédéric Déliot CEA-Saclay

GDR Terascale, Marseille, 11-October-2011

Top-Antitop Charge Asymmetry

- At NLO, QCD predicts an asymmetry for $t\bar{t}$ produced via $q\bar{q}$ initial state
 - the top quark is predicted to be emitted preferably in the direction of the incoming quark
 the exchange of new particles like Z' or axigluon could modify it

interference between diagrams with different C

• similar phenomena in QED observed in the 80s in ee $\rightarrow \mu\mu$ events

- even without Z (
$$\sqrt{s}$$
 = 35 GeV << M_Z)

Charge Asymmetry Observables

same process leads to different observables at the Tevatron and the LHC - p/pbar vs p/p collisions

 $\Delta y = y_t - y_{\bar{t}}$ same as A^{ttbar}FB

3

SM Predictions

- in addition to the leading QCD contributions (Kuhn, Rodrigo, arXiv:hep-ph/9807420):
 - mixed QCD-EWK corrections (Bernreuther, Si, arXiv:1003.3926, Hollik, Pagani, arXiv:1107.2606) : ~ 20 %
 - higher-order QCD contributions: soft-gluon resummation : rather small (Ahrens et al arXiv:1003.5827, arXiv:1106.6051, Kidonakis arXiv:1105.5167)

Tevatro	ก:				B. Pe	- Jak	*
			A ^{tt} _{FB} [%	6]	А ^{рр} [%]	'op2011
	NLO		$7.32^{+0.69}_{-0.59}$	⊢0.18 —0.19	$4.81^{+0.45+0}_{-0.39-0}$).13 0.13	
	NLO+NNLL [Ahrens et. al.'11]		7.24 ^{+1.04}	⊢0.20 —0.27	4.88+0.20+0).17 0.18	
	NNLO _{approx} [Kidonakis '11]				$5.2^{+0.0}_{-0.6}$		
	EW'/NLO' ($\mu = m_t$) [Bernreuther, S	i '10]	0.05		0.04		
	EW/NLO ($\mu = m_t$) [Hollik, Pagani '	10]	0.22		0.22		
	A ^{tt} _{FB} [%]	M _{tī} <	< 450 GeV	M _{tī}	> 450 GeV	1	
	NLO	5.3	+0.3+0.1 -0.4-0.1	10	$.6^{+1.1+0.3}_{-0.8-0.1}$		
	NLO+NNLL [Ahrens et al]	5.2	+0.7+0.1	11	$.1^{+1.9+0.3}_{-1.0-0.0}$		
	EW/NLO ($\mu = m_t$) [Hollik et al]		-		0.23		

LHC: A_c ~ 1 %

- small effect in QCD
 - powerful test of QCD + sensitive probe of new physics

Event Selection

- lepton+jets channel mainly
 - exactly one lepton (pt>20-30 GeV)
 - at least 4 jets (pt>20-30 GeV) | η | < 2.0-2.5, at least 1 b-tag
 - additional cuts: MET > 20-35 GeV + cut on m_T(W)
- CDF also in the dilepton channel
 - 2 leptons with pt > 20 GeV
 - 2 jets pt > 15 GeV, $\mid\!\eta\mid$ < 2.5
 - MET > 20-50 GeV, Ht > 200 GeV
- background estimation in the l+jets channel
 - QCD data-driven:

* matrix method: $N^{loose} = N^{loose}_{real} + N^{loose}_{fake}$ $N^{tight} = \epsilon_{real} N^{loose}_{real} + \epsilon_{fake} N^{loose}_{fake}$

- * fit the MET distribution at low MET (+ M_{jjj})
- W+jets: shape from MC, normalization from data:
 - * fit together with asymmetry

* from difference between positive D⁺/negative D⁻ leptons in data (2jet pretag)

- * fit the MET distribution + M_{jjj} together with QCD
- I+jets yields:
 - Tevatron: CDF: 5.3 fb⁻¹, D0 5.4 fb⁻¹ (published or submitted)
 - ~ 1500 selected events, 22-29 % background
 - LHC: Atlas 0.7 fb⁻¹, CMS: 1.1 fb⁻¹ (preliminary results for the summer 2011 conferences)
 - ~ 7500-12000 selected events, ~ 20 % background

ttbar Reconstruction

- need to reconstruct the full event kinematics to compute Δy
 - χ^2 test or likelihood to assign the right combination
 - * accounting for experimental resolution
 - * b-tag: additional constraint

* M_W and $M_{\rm t}$ fixed to their world average values within their width

Atlas: L =
$$\mathcal{B}(\widetilde{E}_{p,1}, \widetilde{E}_{p,2} | m_W, \Gamma_W) \cdot \mathcal{B}(\widetilde{E}_{lep}, \widetilde{E}_{\nu} | m_W, \Gamma_W) \cdot \mathcal{B}(\widetilde{E}_{p,1}, \widetilde{E}_{p,2}, \widetilde{E}_{p,3} | m_t, \Gamma_t) \cdot \mathcal{B}(\widetilde{E}_{lep}, \widetilde{E}_{\nu}, \widetilde{E}_{p,4} | m_t, \Gamma_t) \cdot \mathcal{W}(\widetilde{E}_{x}^{miss} | \hat{p}_{x,\nu}) \cdot \mathcal{W}(\widetilde{E}_{y}^{miss} | \hat{p}_{y,\nu}) \cdot \mathcal{W}(\widetilde{E}_{lep} | \hat{E}_{lep}) \cdot \prod_{i=1}^{4} \mathcal{W}(\widetilde{P}_{p,i} | \hat{E}_{jet,i}) \cdot \prod_{i=1}^{4} \mathcal{W}(\widetilde{\eta}_{p,i} | \hat{\eta}_{jet,i}) \cdot \prod_{i=1}^{4} \mathcal{W}(\widetilde{\phi}_{p,i} | \hat{\phi}_{jet,i}) \cdot \prod_{i=1}^{4} P(\text{tagged | parton flavour})$$

CMS:
$$\psi = L(m_1)L(m_2)L(m_3)P_b(x_{b,lep})P_b(x_{b,had})(1-P_b(x_{q1}))(1-P_b(x_{q2}))$$

Raw (Detector Level) Asymmetry

• subtract (fit) estimated background:

• can't directly compare due to different acceptance cuts and detector effects

Unfolding

- Correct for acceptance and resolution effects
- different techniques:
 - CDF: 4-bin unfolding $\vec{n}_{\text{monton}} = \mathbf{A}^{-1} \mathbf{S}^{-1} (\vec{n}_{\text{data}} - \vec{n}_{\text{blue}})$ A: acceptance S: migration ma

- DO: 50-> 26 bin regularized unfolding (TUnfold) regularization strength evaluated using ensemble testing
- Atlas: iterative Bayesian unfolding regularization through iteration

Y, I - IY, (MC Reco)

- CMS: regularized unfolding based on generalized matrix inversion

ATLAS Preliminary

Unfolded Asymmetry

results after unfolding Events 25 AS Preliminary L = 0.70 fb 20 Forward-Backward Top Asymmetry, % 15 Production Level 10 CDF, 5.3fb⁻¹ 15.8±7.2±1.7 |Y,|-|Y;| DØ, 5.4fb⁻¹ 19.6±6.0^{+1.8} 0.4 1/a da/d(|m¦|-|m¦|) CMS Preliminary Data S. Frixione and B.R. Webber, 1.09 fb⁻¹ at vs = 7 TeV NLO prediction 0.35 JHEP 06, 029 (2002) A_= -0.016 ± 0.030 20 0.3 1+jets 0 10 30 0.25 0.2 0.15 Predictions Unfolded Asymmetry 0.1E $A_{\rm FB}^{tt} = 15.8 \pm 7.2 ({\rm stat}) \pm 1.7 ({\rm syst})\%$ CDF $A_{\rm MCFM} = 5.8 \pm 0.9\%$ 0.05 . . . l l . . . $A_{\rm FB}^{tt} = 19.6 \pm 6.0(\text{stat})_{-2.6}^{+1.8}(\text{syst})\%$ 0 $A_{\rm MC@NLO} = 5.0 \pm 0.1\%$ D0-2 -1 0 2 3 ml-ml $A_C^{\Delta y} = -2.4 \pm 1.6(\text{stat}) \pm 2.3(\text{syst})\%$ Atlas $A_{\rm MC@NLO} = 0.6\%$ $A_C^{\Delta\eta} = -1.3 \pm 2.6(\text{stat})^{+2.6}_{-2.1}(\text{syst})\%$ CMS $A_{ m theo} = 1.1 \pm 0.1\%$ difference with MC@NLO: 1.3-2.4 σ

Statistically limited at the Tevatron

Mass Dependence

• new physics contribution would change the dependency of the asymmetry vs M_{ttbar} (to have large effects on the asymmetry, often interference between NP and SM at tree level)

Frédéric Déliot, GDR Terascale, Marseille, 11-OCT-2011

Leptonic Asymmetries

- D0 measures the lepton based asymmetry in the lepton+jets channel
 - lepton based asymmetry (diluted but less sensible to unfolding)

$$A_{\rm FB}^{l} = \frac{N(q_l y_l > 0) - N(q_l y_l < 0)}{N(q_l y_l > 0) + N(q_l y_l < 0)}$$

	$A_{\rm FB}^l$ ((%)	
	Reconstruction level	Production level	
Data	14.2 ± 3.8	15.2 ± 4.0	
MC@NLO	0.8 ± 0.6	2.1 ± 0.1	> ;

Frédéric Déliot, GDR Terascale, Marseille, 11-OCT-2011

σ

Modeling of the ttbar Pt

- correlation of A_{FB} with pt of the top pair
 - different predictions depending on the MC and tunes
 - systematics on the measurement conservatively estimated by turning off the dependency at DO

angular coherence between top and initial parton shower

top pair pt not well modeled in data

Need better understanding of the predictions and dedicate measurements of the top pair pt

New Physics Scenarii

• can be classified according to the channel through which the new particle interacts

- s-channel:
 - * color-octet vector (axigluons):

constraints from FCNC, total ttbar cross section and dijet production at LHC

- t-channel:

* color-singlet vectors (Z', W'): large couplings to have a positive asymmetry constraints from total ttbar cross section, same sign top production at LHC for Z'

* color-singlet scalar doublet (Φ)

- u-channel:

* color-triplet/sextet scalar (ω^4, Ω^4):

constraints from same sign top production at LHC for \varOmega^4

• from experimental constraints

- SM ttbar cross section + large asymmetry at large M_{ttbar} at the Tevatron + small asymmetry at the LHC: might favor axigluon and scalar doublet (Aguilar-Saavedra, Perez-Victoria, arXiv:1107.0841)

- but what about the constraints from the leptonic asymmetries?
 - both CDF dilepton channel and DO lepton+jets lepton-based asymmetries

Summary

Unfolded M, [GeV/c2]

Frédéric Déliot, GDR Terascale, Marseille, 11-OCT-2011

Perspectives

• Only half of the Tevatron data has been analyzed so far

30-SEP-11: turning off of the Tevatron after 28 years

 LHC will deliver ~ 5 fb⁻¹ of data before the winter break

Stay tuned !

Frédéric Déliot, GDR Terascale, Marseille, 11-OCT-2011

Frédéric Déliot, GDR Terascale, Marseille, 11-OCT-2011

Systematics

(D	F

effect	$\delta A^{\mathrm{p}ar{\mathrm{p}}}$	$\delta A^{\mathrm{t}\overline{\mathrm{t}}}$		sys.
background magnitude	0.015	0.011	background LJ	0.011
background shape	0.014	0.007	background DIL	0.0054
ISR/FSR	0.010	0.001	JES	0.0070
JES	0.003	0.007	PDF	0.0047
PDF	0.005	0.005	Signal model	0.0001
color reconnection	0.001	0.004	bighai modei	0.0032
LO MC generator	0.005	0.005		
total	0.024	0.017		

Atlas	Electron channel	Muon channel		
Source of systematic uncertainty	ΔΑς			
Signal and background modelling				
tī generator	0.0243	0.0100		
Parton shower/fragmentation	0.0108	0.0079		
ISR/FSR	0.0074	0.0074		
PDF uncertainty	0.0008	0.0008		
Top mass	0.0059	0.0059		
QCD normalisation	0.0062	0.0059		
W+jets normalisation	0.0054	0.0097		
W+jets shape	0.0043	0.0043		
Z+jets normalisation	0.0002	0.0002		
Z+jets shape	0.0010	0.0010		
Single Top normalisation	0.0002	0.0002		
Diboson normalisation	0.00001	0.00001		
MC sample sizes	0.0043	0.0029		
Detector modelling				
Muon efficiencies	(n.a.)	0.0002		
Muon momentum scale and resolution	0.0004	0.0004		
Electron efficiencies	0.0004	(n.a.)		
Electron energy scale and resolution	0.0004	0.0004		
Lepton charge misidentification	0.0002	0.0002		
Jet energy scale	0.0041	0.0046		
Jet energy resolution	0.0105	0.0040		
Jet reconstruction efficiency	0.0003	0.0003		
b-tagging scale factors	0.0038	0.0038		
Charge asymmetry in b-tagging efficiency	0.0007	0.0007		
Calorimeter readout	0.0015	0.0029		
Combined uncertainty	0.032	0.022		

NO	Absolute uncertainty ^a (%)					
DU	Reconstr	Prod. level				
Source	Prediction	Measurement	Measurement			
Jet reco	± 0.3	± 0.5	± 1.0			
JES/JER	+0.5	-0.5	-1.3			
Signal modeling	± 0.3	± 0.5	+0.3/-1.6			
b tagging	-	± 0.1	± 0.1			
Charge ID	-	+0.1	+0.2/-0.1			
Bg subtraction	-	± 0.1	+0.8/-0.7			
Unfolding Bias	-	-	+1.1/-1.0			
Total	+0.7/-0.5	+0.8/-0.9	+1.8/-2.6			

CMS	A	Γ_{C}^{η}	A_C^y		
Source of Systematic	- Variation	+ Variation	- Variation	+ Variation	
JES	-0.003	0.000	-0.007	0.000	
JER	-0.002	0.000	-0.001	0.001	
Q^2 scale	-0.014	0.000	-0.013	+0.003	
ISR/FSR	-0.006	+0.003	0.000	+0.024	
Matching threshold	-0.006	0.000	-0.013	+0.006	
PDF	-0.001	+0.001	-0.001	+0.001	
b tagging	-0.001	+0.003	0.000	0.001	
Lepton ID/sel. efficiency	-0.002	+0.004	-0.002	0.003	
QCD model	-0.008	+0.008	-0.006	+0.006	
Pileup	-0.002	+0.002	0.000	0.000	
Overall	-0.019	+0.010	-0.021	+0.026	

Number of New Physics Publications About the ttbar Asymmetry J.A. Aguilar Saavedra, Top2011 **AFB** papers Model flood New trends 14 12 10 8 6

~ 80 dedicated papers this year