Fine Tuning

Grégory Espitalier Noël^a with Ulrich Elwanger^b Cyril Hugonie^c

Fine Tuning in the semi-constrained NMSSM (soon in JHEP [arXiv:1107.2472])

a : Laboratoire Charles Coulomb (Montpellier)

b : Laboratoire de Physique Théorique (Orsay)

c : Laboratoire Univers et Particules de Montpellier

October 13, 2011 GDR Terascale CPPM

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Content

Fine Tuning

Constrained MSSM

semi-constrained NMSSM

sNMSSM : Higgs mixing scenario sNMSSM : $H_1 \rightarrow A_1A_1$ scenario

Conclusions and Outlook

Fine Tuning

Grégory Espitalier Noël^a with Ulrich Elwanger^b, Cyril Hugonie^c

Fine Tuning

Constrained MSSM

semi-constrained NMSSM

sNMSSM : Higgs mixing scenario

 $sNMSSM : H_1 \longrightarrow A_1A_1$ scenario

Conclusions and Outlook

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Hierarchy Problem and Fine Tuning (Δ)

 $\frac{\textit{Measuring Fine Tuning }(\Delta) \textit{ in SUSY models}}{(\textit{Barbieri \& Guidice [Nucl. Phys. B 306 (1988) 63]})} \\ \Delta = \textit{Max} \{\Delta_{:}^{\textit{GUT}}\}$

$$\Delta_{i}^{GUT} = \left| \frac{\partial \ln(M_{Z})}{\partial \ln(p_{i}^{GUT})} \right| = \left| \sum_{j} \frac{\partial \ln(M_{Z})}{\partial \ln(p_{j}^{SUSY})} \frac{\partial \ln(p_{j}^{SUSY})}{\partial \ln(p_{i}^{GUT})} \right|$$

with :

LEP

• $p_i^{GUT} = \text{GUT}$ scale independent parameters

• $p_i^{SUSY} = SUSY$ scale parameters obtained through RGEs

Little hierarchy problem / LEP II paradox

$$\begin{split} M_Z^2 \simeq -2\mu^2 + \frac{2(m_{H_d}^2 - \tan^2\beta m_{H_u}^2)}{\tan^2\beta - 1} & \text{with} \quad m_{H_u}^2 \sim -\tilde{m}_{stop}^2 \\ \text{for } \tan^2\beta >> 1 \text{ and } |m_{H_u}^2| \sim \mu^2 \text{ large }: \\ \\ \Delta_{m_{H_u}}^{SUSY} \sim 2\frac{|m_{H_u}^2|}{M_Z^2} \sim \Delta_{\mu}^{SUSY} \sim 2\frac{\mu^2}{M_Z^2} \\ \text{II limit } M_{H_1} > 114.4 \text{ GeV} \Rightarrow (\delta M_h^2)_{1 \ loop} \propto \log(\frac{\tilde{m}_{stop}^2}{m_{top}^2}) & \text{is large} \\ \\ \hline \text{Implies large } \Delta \end{split}$$

Fine Tuning

Grégory Espitalier Noël^a with Ulrich Elwanger^b, Cyril Hugonie^c

Fine Tuning

Constrained MSSM

semi-constrained NMSSM

sNMSSM : Higgs mixing scenario

 $sNMSSM : H_1 \longrightarrow A_1A_1$ scenario

CMSSM

FT computation

Computation of Δ at two loop order with the code NMSPEC inside NMSSMTOOLs (Ellwanger, Hugonie, Gunion [Comput. Phys. Commun. 177 (2007) 399; Comput. Phys. Commun. 175 (2006) 290; JHEP 02 (2005) 066])

using MCMC method and simulated annealing to minimize Δ .

- Experimental constraints considered :
 - LEP
 - B-physics
 - ▶ (g 2)_µ

We do not consider any constraints on the Dark Matter Relic Density.

CMSSM : input and FT parameters

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

- CMSSM input parameters :
 - $\blacktriangleright M_{1/2}, m_0, A_0, \tan\beta, sign(\mu)$

The MSSM is obtained in the singlet sector decoupling limit of the $\ensuremath{\mathsf{NMSSM}}$

Parameters for the FT computation :

$$p_i^{GUT} = M_{1/2}, m_0, A_0, \mu_0, B_0, h_t p_i^{SUSY} = m_{H_u}, m_{H_d}, \mu, B, h_t$$

Fine Tuning

Grégory Espitalier Noël^a with Ulrich Elwanger^b, Cyril Hugonie^c

Fine Tuning

Constrained MSSM

semi-constrained NMSSM

sNMSSM : Higgs mixing scenario sNMSSM : $H_1 \rightarrow A_1 A_1$

CMSSM : results

Black Line = ATLAS $\sim 1 \text{ fb}^{-1}$ [Atlas Note ATL-COM-PHYS-2011-981] Red Line = CMS $\sim 1 \text{ fb}^{-1}$ [CMS Note CMS-PAS-SUS-11-003]

 $\begin{array}{rcl} \text{Considering LEP limits only}: & \Delta_{min} \sim 33\\ \frac{\partial \ln \mu^2}{\partial \ln \mu^2} \simeq 1 & \Rightarrow & \Delta_{\mu}^{SUSY} \simeq \Delta_{\mu}^{GUT} & \text{large} \end{array}$

- Similar results in the litterature : Cassel, Ghilencea, Ross 2010 Fig. 7d,e [Nucl. Phys. B835 (2010) 110-134] (but Δ_{h_t} not considered)
 - Considering LHC limits on m_{sq} and M_{gl} : $\Delta_{min} \sim 47$
- for $M_{1/2}$ and m_0 large $\Rightarrow \Delta_{h_t}^{GUT}$ large
- $M_{H_1}(\Delta_{min}) \sim 107$ GeV without EWPT :

If the Higgs mass limit is lower then Δ is lower \Rightarrow NMSSM

Fine Tuning

Grégory Espitalier Noël^a with Ulrich Elwanger^b, Cyril Hugonie^c

Fine Tunin

Constrained MSSM

semi-constrained NMSSM

sNMSSM : Higgs mixing scenario

 $sNMSSM : H_1 \longrightarrow A_1A_2$ scenario

sNMSSM : defining the model

Gravity Mediated SUSY Breaking Z_3 invariant NMSSM with non-universal singlet sector :

$$\begin{split} & \mathcal{W}_{\text{NMSSM }(Z_{3} \text{ invariant})} = \lambda SH_{u}.H_{d} + \frac{\kappa}{3}S^{3} \\ & +h_{t}H_{u}.QT_{R}^{c} + h_{b}H_{d}.QB_{R}^{c} + h_{\tau}H_{d}.L\tau_{R}^{c} \\ -\mathcal{L}_{\text{Soft}} = \frac{1}{2} \bigg(M_{1}\tilde{B}\tilde{B} + M_{2}\sum_{i=1}^{3}\tilde{W}^{i}\tilde{W}_{i} + M_{3}\sum_{a=1}^{8}\tilde{G}^{a}\tilde{G}_{a} \bigg) + h.c. \\ & m_{H_{u}}^{2} \|H_{u}\|^{2} + m_{H_{d}}^{2} \|H_{d}\|^{2} + m_{S}^{2} \|S\|^{2} \\ & + m_{Q}^{2} \|Q^{2}\| + m_{T}^{2} \|T_{R}^{2}\| + m_{B}^{2} \|B_{R}^{2}\| + m_{L}^{2} \|L^{2}\| + m_{\tau}^{2} \|\tau_{R}^{2}\| \\ & \bigg(h_{t}A_{t}Q.H_{u}T_{R}^{c} + h_{b}A_{b}H_{d}.QB_{R}^{c} + h_{\tau}A_{\tau}H_{d}.L\tau_{R}^{c} \\ & + \lambda A_{\lambda}H_{u}.H_{d}S + \frac{1}{3}\kappa A_{\kappa}S^{3} \bigg) + h.c. \end{split}$$

with :

 $\mu_{eff}=\lambda v_{s} \mbox{ (solving the MSSM } \mu \mbox{ problem}) \mbox{ } B_{eff}=A_{\lambda}+\kappa v_{s}$ sNMSSM input parameters :

 $\blacktriangleright M_{1/2}, m_0, A_0, \tan\beta, \lambda, A_{\kappa}$

Parameters for the FT computation :

$$p_i^{GUT} = M_{1/2}, m_0, A_0, \lambda, \kappa, m_5, A_\kappa, h_t$$

$$p_i^{SUSY} = m_{H_u}, m_{H_d}, m_5^2, A_\lambda, A_\kappa, \lambda, \kappa, h_t$$

Fine Tuning

Grégory Espitalier Noël^a with Ulrich Elwanger^b, Cyril Hugonie^c

Fine Tuning

Constrained MSSM

semi-constrained NMSSM

sNMSSM : Higgs mixing scenario sNMSSM : $H_1 \longrightarrow A_1A_1$ scenario

sNMSSM : scenarios

 $\begin{array}{l} 7 \ \text{Higgs} : H_1, H_2, H_3, A_1, A_2, H^{\pm} \\ \Rightarrow H_1 \ \text{and} \ \chi_1^0 \ \text{can have singlet and singlino components respectively} \\ \Rightarrow \ \text{new phenomenology} \end{array}$

Scenarios :

1. h/S mixing \Rightarrow reduced coupling g_{H_1ZZ} (BR($H_1 \rightarrow bb$) > 0.7)

2. New Higgs to Higgs decays
$$\Rightarrow H_1 \rightarrow A_1A_1 \quad (BR(H_1 \rightarrow A_1A_1) > 0.2)$$

Fine Tuning

Grégory Espitalier Noël^a with Ulrich Elwanger^b, Cyril Hugonie^c

Fine Tuning

Constrained MSSM

semi-constrained NMSSM

sNMSSM : Higgs mixing scenario sNMSSM : $H_1 \rightarrow A_1A_1$

sNMSSM : Higgs mixing

Exclusion curves only indicative

⇒ NMSSM's signals different = weaker bounds !!!

Fine Tuning

Grégory Espitalier Noël^a with Ulrich Elwanger^b, Cyril Hugonie^C

Fine Tuning

Constrained MSSM

semi-constrained NMSSM

sNMSSM : Higgs mixing scenario

 $sNMSSM : H_1 \longrightarrow A_1A_1$ scenario

Conclusions and Outlook

• Considering LEP limits only : M_{H_1} constraints Δ ($\sim \Delta_{\mu}$)

$$\Rightarrow$$
 $\Delta_{sNMSSM} \sim 10 < \Delta_{CMSSM}$

• Considering LHC limits : \tilde{m}_{stop}^2 constraints Δ ($\sim \Delta_{h_t}$)

$$\Rightarrow \Delta_{sNMSSM} \sim$$
 44 $\sim \Delta_{CMSSM}$

Effect of LHC exclusions $\Rightarrow \Delta \propto M_{SUSY} - M_{EWSB}$

<□▶ <□▶ < □▶ < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

sNMSSM : Higgs mixing

(LHC constraints not applied for this curve)

- ▶ Shape of the curve given by the LEP constraint " ξ^2 versus M_{H_1} "
- ▶ Δ_{min} for $M_{H_1} \sim 97~{\rm GeV} \Rightarrow$ correspond to the region of the LEP II 2.3σ excess

But now : $M_{H_1, min} \sim 110$ GeV with LHC constraints on m_{sq} and M_{gl}

Fine Tuning

Grégory Espitalier Noël^a with Ulrich Elwanger^b, Cyril Hugonie^c

Fine Tuning

Constrained MSSM

semi-constrained NMSSM

sNMSSM : Higgs mixing scenario

 $sNMSSM : H_1 \longrightarrow A_1A_1$ scenario

Conclusions and Outlook

・ロト・西ト・ヨト ・日・ うへぐ

 $sNMSSM : H_1 \rightarrow A_1A_1$ sceanario

• Considering LEP limits only : M_{H_1} constraints Δ ($\sim \Delta_{\mu}$)

 $\Rightarrow \quad \Delta_{sNMSSM} \sim 9 < \Delta_{CMSSM}$ $\blacktriangleright \text{ Considering LHC limits : } \tilde{m}_{stop}^2 \text{ constraints } \Delta (\sim \Delta_{h_t})$

 $\Rightarrow \quad \Delta_{\text{sNMSSM}} \sim 39 < \Delta_{\text{CMSSM}}$

Effect of LHC exclusions $\Rightarrow \Delta \propto M_{SUSY} - M_{EWSB}$

Fine Tuning

Grégory Espitalier Noël^a with Ulrich Elwanger^b, Cyril Hugonie^c

Fine Tuning

Constrained MSSM

semi-constrained NMSSM

sNMSSM : Higgs mixing scenario

 $sNMSSM : H_1 \longrightarrow A_1A_1$ scenario

Conclusions and Outlook

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$sNMSSM : H_1 \rightarrow A_1A_1$ sceanario

- $M_{H_1}(\Delta_{min}) \sim 105 \text{ GeV}$
- Δ is constrained by $BR(H_1 \rightarrow A_1A_1)$ and thus by M_{A_1}

But now : $M_{H_1, min} \sim 114$ GeV with LHC constraints on m_{sq} and M_{gl}

Different region in Δ vs M_{A_1} plane :

- $M_{A_1} \gtrsim 12 \text{ GeV} \Rightarrow \text{constraints} = H_1 \rightarrow A_1 A_1 \rightarrow 4b$
 - ▶ $12 \lesssim M_{A_1} \lesssim 30 \text{ GeV} \Rightarrow \text{constraints} = H_1 \rightarrow A_1A_1 \rightarrow 4b \text{ strong}$
 - ► 30 $\leq M_{A_1} \leq$ 57 GeV $\Rightarrow \Delta$ minimum
 - ► $M_{A_1} \gtrsim 57$ GeV $\equiv M_{H_1} > 2M_{A_1} > 114$ GeV \Rightarrow increase of Δ

•
$$M_{A_1} \lesssim 11 \text{ GeV} \Rightarrow \text{constraints} = H_1 \rightarrow A_1 A_1 \rightarrow 4\tau$$

- ▶ 9 \lesssim $M_{A_1} \lesssim$ 11 GeV \Rightarrow not constrained because of $A_1 \eta_b$ mixing
- $M_{A_1} \lesssim 9 \text{ GeV} \Rightarrow H_1 \rightarrow A_1 A_1 \rightarrow 4\tau \text{ and } B_S \rightarrow \mu^+_{D} \mu^-_{D}$

Fine Tuning

Grégory Espitalier Noël^a with Ulrich Elwanger^b, Cyril Hugonie^c

Fine Tuning

Constrained MSSM

semi-constrained NMSSM

sNMSSM : Higgs mixing scenario

 $sNMSSM : H_1 \rightarrow A_1A_1$ scenario

Conclusions and Outlook

Conclusions

- LHC results excludes large part of the minimal FT regions of the CMSSM and sNMSSM
- Δ is no more constrained by LEP limits on M_{H_1} but by LHC limits on m_{sq} and M_{gl}
- ▶ Little differences CMSSM and sNMSSM, althought LHC M_{gl} and m_{sq} exclusion curves only indicative for sNMSSM $\Rightarrow \Delta_{sNMSSM} \lesssim \Delta_{CMSSM}$

Outlook

Other ways to reduce Δ (escape the LHC constraints on m_{sq} and M_{gl})

- Lowering Λ_{SUSY} and/or Λ_{GUT} (ex. : GMSB models)
- Giving up on universality conditions at Λ_{messenger}
- Introduce relations between some p_i^{GUT} (and a model to justify this)

More experimental studies on the sNMSSM phenomenology?

Fine Tuning

Grégory Espitalier Noël^a with Ulrich Elwanger^b, Cyril Hugonie^c

Fine Tunin;

Constrained MSSM

emi-constrained

sNMSSM : Higgs mixing scenario

 $sNMSSM : H_1 \longrightarrow A_1A_1$ scenario