N-body simulations and dark matter detection

N-body :

See e.g : Keres et al arXiv:1109.4638 arxiv:1004.0005, Agertz, Teyssier, Moore Governato et al arxiv:0911.2237, arxiv:1106.0499 review : arxiv:0801.1023, Dolag et al

links between N-body simulations and dark matter detection:

Gamma signal and background (arxiv:11xx.xxxx in progress) Direct detection (arxiv:0909.2028) Cosmic rays (arxiv:0808.0332) Gamma and neutrino indirect detection (arxiv:0801.4673)

Collaboration with J. Lavalle, F.-S. Ling, R. Teyssier, L. Athanassoula

See also e.g : Aquarius : gamma (arXiv:0809.0894),Direct detection (arXiv:0812.0362) Via Lactea gamma (arXiv:0805.4416)

....

Emmanuel Nezri Laboratoire d'Astrophysique de Marseille

GDR Terascale, CPPM Marseille. 12 october 2011

Outline

- N-body simulations : some basics
- Features of dark matter halos and disk galaxies
- Consequences for dark matter detection

Introduction

Hierarchical structure formation scenario

- Comological parameters : Ω_{Λ} , Ω_{M} , Ω_{b} , σ_{8} , H_{0} , h.

- Size of the box

- Computer capacity \Rightarrow Nb of particles
- \Rightarrow Mass of dark matter particles $\sim 10^{3-5} M_{\odot}$

Introduction

Initial conditions given by CMB power spectrum : WMAP

Physics

DARK MATTER (and STARS)

$$\nabla^2 \Phi = 4\pi G \Big[\rho + (n-2)\rho_{\rm X} \Big]$$

• Gravity : Vlasov and Poisson equations

GAS

- Hydrodynamics : Euler equations
- + Gravity

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{u}) = 0,$$

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} = -\nabla \Phi - \frac{\nabla p}{\rho},$$

$$\frac{\partial \varepsilon}{\partial t} + \boldsymbol{u} \cdot \nabla \varepsilon = -\frac{p}{\rho} \nabla \cdot \boldsymbol{u},$$

Physics

DARK MATTER (and STARS)

• Gravity : Vlasov and Poisson equations

Solved by N-body techniques : i.e "particles"

GAS

- Hydrodynamics : Euler equations
- + Gravity

2 approaches :

- Lagrangian : fluid=particles (SPH) GADGET code (V.Springel)
- Eulerian : fluid=grid (AMR) RAMSES code (R.Teyssier)
- "Hybrid" AREPO (V.Springel)

Some results

• NFW, VIA LACTEA I&II, AQUARIUS, GHALO, HORIZON, CLUES, BOLCHOI ...

DARK MATTER only simulations :

- Describe well large scale structure formation : filaments
- Give non smooth dark matter distribution : presence of virialized (sub)structures (agreement with Press-Schester, Sheth-Tormen)
 - = CLUMPS

AQUARIUS, Springel et al 2008

Some results

- NFW, VIA LACTEA I&II, AQUARIUS, GHALO, HORIZON, CLUES ... Simulations including gas :
- Filaments
- CLUMPS
- Gas accreted in DM potential
 - \rightarrow Disk and stars formation

HORIZON project simulation by R.Teyssier

Pictures with Glnemo viewer (Jean-Charles.Lambert@oamp.fr)

Star formation : recipe

- Infall of cold gas \rightarrow stars
- Model the gas conversion into stars by a Schmidt law

$$\dot{\rho}_g = -\epsilon_{\rm ff} \frac{\rho_{\rm g}}{t_{\rm ff}} \text{ for } \rho > \rho_0$$

- t_{ff} free-fall time
- **p0** threshold density
- $\boldsymbol{\epsilon}_{_{\mathrm{ff}}}$ drive star formation rate

\rightarrow Transform gas into star particles

Supernovae feedback

- Type II SN, relevant for stellar masses ~ $\,8{-}40~M_{\odot}$
- Represents ~ 10 % of the mass of a stellar population
- Short lived stars
- ~ 10-20 Myr after the star (particle) creation : explosion
- ~ 10 % of the star (particle) mass is re-injected into the gas
- Energy per explosion $E_{\rm SNII} = 10^{51} \, {\rm erg}$

\rightarrow reheat the gas, can regulate star formation rate

Clumpy dark matter halos

• Dark matter distribution not smooth : clump spectrum

$$\frac{dN_{cl}}{dM} \propto \left(\frac{M}{M_H}\right)^n$$

typically $n \sim -1.8 - 2$

Problem :

Number of satellites > observations ... new dwarf galaxies to be discovered ? ... in progress satellites whitout gas and stars (photoionisation, SN feedback)?

(Cuspy ?) Dark matter Halos

Fit of N-body results :

• Cusps

$$\rho_{DM}(r) = \frac{\rho_s}{(r/r_s)^{\gamma} [1 + (r/r_s)^{\alpha}]^{(\beta - \gamma)/\alpha}}$$

 $\rho_{DM}(r) \propto r^{-\gamma} \pmod{r}$

- * NFW 1997 : $\gamma = 1$
- * Moore et al 1999 : $\gamma = 1.5$
- * VIA LACTEA (I and II), Diemand et al 2006-2008 : $\gamma = 1.2$
- Einasto (AQUARIUS) $\rho_D M(r) = \rho_2 e^{-\frac{2}{\alpha}[(r/r_2)^{\alpha} 1]}$

But : Observations suggest cored profiles, i.e $\gamma = 0$

Baryon impacts on dark matter halo

Dark matter profile steepened or flattened by baryon processes

• Adiabatic compression : Blumenthal et al 1986

Angular momentum and mass conservation: $M_i(r_i)r_i = [M_b(r_f) + M_{DM}(r_f)]r_f$

- \star $M_i(r)$: mass profile of the galactic halo before the cooling of the baryons
- \star $M_b(r)$: the baryonic composition of the Milky Way observed now
- * $M_{DM}(r)$: the dark matter component of the halo today (determined iteratively)

NFW : $\rho_{DM}(r) \propto r^{-1} \rightarrow r^{-1.5}$

- ISM physics : stellar formation, SN feedback ...
- The response of the DM halo is driven by the history of assembly of baryons into a galaxy : *Pedrosa et al* : arxiv:0902.2100
- ISM carefull treatment could lead to shallow profiles on dwarf scale Governato et al arxiv:0911.2237,Pontzen& Governato arxiv:1106.0499
- Dark disc : clump accretion by stellar and star disc ... Read et al 0902.0009

→ enhancement of DD signal ? capture rates in the Sun ? Bruch et al 2009 vs Ling 2010

Still debated ...

CDM Cosmological simulations

Cosmological N-body simulations with gaz : successful tool for disc galaxy formation, works well qualitatively

- Nb and dynamics of satellites
- Cusp/Core (Governato et al arxiv:0911.2237,Pontzen,Governato arxiv:1106.0499)
- Angular momentum problem (bulges too dominant, discs not extended enough)

(Agertz, Teyssier, Moore arxiv:1004.0005, Keres et al arxiv:1109.4638)

Improvement of ISM physics treatment

Realistic and consistent Milky-Way like framework for astroparticle calculations ...

NFW : Navarro Frenk and White ... Frenk supports warm dark matter arxiv:1104.2929, arxiv:1105.3474 http://www.bbc.co.uk/news/science-environment-14948730

Direct detection

Rate :

dR aσ DM $\eta(E_R,t)$ dE_R

Particle and nuclear physics

$$\frac{d\sigma}{dE_R} = \frac{M_N}{2\mu_n^2} \sigma_n^0 \frac{\left(f_p^2 Z + (A - Z)f_n^2\right)^2}{f_n^2} F^2(E_R)$$

Astrophysics

$$\eta = \int d^{3} \vec{v} \, \frac{f(\vec{v})}{\left| \vec{v} - \vec{v}_{\oplus,G} \right|}$$

Features ≠ Maxwellian ? Dark disk ? Corotation ? Local density ?

ρDM : Local dark matter density +

Dark matter velocity distribution

Signature on direct detection signals

Local DM density, Dark disk?

 $Mean(\rho_{sun}) > 0.3 \text{ GeV.cm3}$

Enhanced direct detection signal

Direct detection modulation

Modulation depends on velocity distribution : Maxwellian versus simulation

Directionnal direct detection could distinguish velocity distribution ... in progress collab with J. Billard, F. Mayet (Mimac)

Gamma/neutrino indirect detection

Cusp ? Clump features ? Baryons ? (compression ?) Feedback ?

Dark matter density :

Dark matter only

Simulations from the HORIZON project, AMR RAMSES code (R. Teyssier) **Dark matter+ baryons**

Adiabatic compression

Strong cusp

Gamma skymap : Dark matter contribution N-body simulation : dark matter only

+ standard thermal (HEP+cosmo) scenario Gammas : FERMI,HESS ~ -10 Neutrinos : KM3Net GC ~ -9

arxiv:0801.4673

Gamma skymap : Dark matter contribution N-body simulation : dark matter + baryons

~ 2 orders of magnitude higher fluxes in central region Very high astrophysics contribution \rightarrow HEP scenarios Possible conflict with observations FERMI, HESS ... Depend on background ...

Nezri, Lavalle, Teyssier ... soon on arxiv

Gamma skymap : π0 Background N-body simulation : dark matter + baryons

star distribution \rightarrow SNII explosion \rightarrow cosmic rays Gas distribution \rightarrow CR spallation \rightarrow gamma fluxes

To be compared with Fermi ...

Nezri, Lavalle, Teyssier ... soon on arxiv

Cosmic rays collaboration with J. Lavalle

$$\vec{\nabla} \left[K(E) \vec{\nabla} \mathcal{N}_{cr} - \vec{V}_{conv} \mathcal{N}_{cr} \right] + \frac{\partial}{\partial E} \left[b(E) \mathcal{N}_{cr} + K_{EE} \frac{\partial}{\partial E} \mathcal{N}_{cr} \right] + \Gamma(E) \mathcal{N}_{cr} + \mathcal{Q} = 0$$
$$\mathcal{Q} \propto \int_{E_{thr}}^{m_{DM}} dE_i \sum_f b_f \frac{dN_i^J}{dE_i} \left(\frac{\langle \sigma v \rangle}{m_{DM}^2} \right) \times \int_{\rho_{DM}}^{\rho_{DM}^2} \rho_{DM}^2(r) dV$$

Particle physics

Astrophysics

Astrophysical uncertainties :

Cosmic rays in N-body framework :

Quantify the uncertainties related to local dark matter density

Use also the gas distribution to calculate signal and background (in progress) Also use magnetic field distribution of simulations (future work)

Cosmic rays N-body simulation : dark matter + baryons

star distribution \rightarrow SNII explosion \rightarrow cosmic rays distribution

Nezri, Lavalle, Teyssier ... in progress

Summary-Conclusion

• Cosmological N-body simulations with gaz : successful tool for galaxy formation

- Nb and dynamics of satellites
- Cusp/Core (Governato et al arxiv:0911.2237)
- Angular momentum problem (bulges too dominant, discs not extended enough) (Agertz, Teyssier, Moore arxiv:1004.0005, Keres et al arxiv:1109.4638)

 \rightarrow too concentrated objects

- Improvement of ISM physics treatment
- Very consistent framework for dark matter detection and astroparticle calculations
- Dark matter signals (DD, γ, ν, CR)
- Backgrounds from gas, stars and ISM physics

Nezri, Lavalle, Teyssier soon on arxiv... + future works sarting a Ph D thesis : Pol Mollitor

Interface between N-body codes (Gadget, Ramses, Arepo ...) and astroparticle codes (Micromegas, Darksusy, Galprop, Usine ...)

Thanks

Gamma skymap : DM versus π 0 Background

N-body simulation : dark matter + baryons

Signal / background

Fermi bubbles ...

Nezri, Lavalle, Teyssier ... soon on arxiv