Astrophysical observables for Dark Matter

> *Fabío Iocco* Marie Curie fellow at Institut d'Astrophysique de Paris

GdR at CPPM Marseille, octobre 12th

Outline

 Microlensing and rotation curve constraints to the DM distribution in our Galaxy

 \rightarrow All types of DM, a "topography" study

 \rightarrow Simulations, direct detection experiments

CMB constraints on self-annihilation cross sections
 → Self-annihilating DM, model-independent analysis
 → Indirect searches

Dark Matter distribution in the Milky Way: microlensing and dynamical constraints

Fabío Iocco

Marie Curie fellow at Institut d'Astrophysique de Paris

Based on arXiv:1107.5810 (JCAP in press)

In collaboration with: *G. Bertone, P. Jetzer, <u>M. Pato</u>*

Basic idea: take home

Rotation curves (all matters)

Microlensing optical depth (only compact bodies)

Diffuse components (DM and Gas)

[Binney & Evans '01]

Outline

Microlensing, an introduction

 \rightarrow Optical depth τ

Modelling baryons in the MW

 \rightarrow Modelling the DM, parameters

Rotation curve observations, an overview

 Results: constraining Adiabatic Contraction and fitting the DM to rotation curve

Microlensing: principles

compact object (lens) between us and source creates two unresolved object result: light magnification *A(t)*

$$A(t) = \frac{u(t)^2 + 2}{u(t)\sqrt{u(t)^2 + 4}}$$

Lens need to be close to *los*: Einstein radius

$$R_{\rm E} = 2.85 \text{ AU} \sqrt{\frac{MD_d [1 - (D_d/D_s)]}{1 \text{ kpc}}}$$

Optical/NIR surveys: / field (620-920) nm B field(420-720) nm

[EROS 2006]

Microlensing caused by compact objects only

Microlensing optical depth τ

The integrated probability of having a luminosity enhancement: events with A>1.34

Observationally:

$$\tau = \frac{1}{N_{\rm obs} \Delta T_{\rm obs}} \frac{\pi}{2} \sum_{\rm events} \frac{t_{\rm E}}{\epsilon(t_{\rm E})}$$

Theoretically,

we need models for the source ad lens distribution

$$au(\ell,b,D_s) = rac{4\pi G}{c^2} \int_0^{D_s} dD_l \
ho_l(\ell,b,D_l) D_l \left(1 - rac{D_l}{D_s}
ight)$$
 $\langle au
angle(\ell,b) = rac{\int_0^{r_\infty} dD_s \ au(\ell,b,D_s) \ dn_s/dD_s}{\int_0^{r_\infty} dD_s \ dn_s/dD_s}$

Notice that τ depends on total mass of population, no IMF!!!

Microlensing observations of GC

MACHO CGR = average of 9 fields

$$(\ell, b) = (1.50^{\circ}, -2.68^{\circ})$$

$$\langle \tau \rangle = 2.17^{+0.47}_{-0.38} \times 10^{-6}$$

few < t_E /days < 700 10⁻³ < M_I/Msun < 80

Sources: red clump giant in the bulge

Insensitive to recently discovered Jupiter mass objects, However, below uncertainty: 0.1% mass content

MACHO [Popowski et al. 2005]

Galactic (baryonic) models

Ingredients: Exponential/Gaussian bulge (with bar) + thin / thick disk Bar at R < 2.5 kpc: bar angle α ≈ 25°

- Model 1: E2 bulge and thin+thick disk;
- Model 2: G2 bulge and thin+thick disk;
- Model 3: G2 bulge and thin disk;
- Model 4: Zhao bulge and thin disk; and

Model 5: bar + disk + gas

Shape fixed, density normalization ρ_b calibrated to fit the MACHO observations

Galactic baryonic models

They fit quite well other microlensing observations:

GC and beyond!!

Mass ditribution used to obtain gravitational potential (circular velocities) using non-spherical Poisson equation; <u>Not adding DM yet</u> (see the following...)

Rotation curves: observations

Gas clouds moving in the disk: inner Galaxy HI or CO line used as tracers <u>circular velocity assumption</u>

 $v_c(R_0 \sin \ell) = v_t(\ell) + v_0 \sin \ell \quad v_0 \equiv v_c(R_0)$

Need to adopt (R_0, v_0) : different values in literature unified rotation curve for (8 kpc, 200km/s)

Rotation curve: uncertainties

We bracket the uncertainty in the determination of (R_0, v_0) 7.5 kpc < R_0 < 8.5kpc 200 km/s < v_0 < 260 km/s

Transformations valid only in the inner circle (safe, see later)

$$R' = R \frac{R'_0}{R_0} \quad v'_t = v_t + \frac{R}{R_0} (v'_0 - v_0)$$

Checking our baryonic models (and adding DM)

<u>With DM</u>: NFW r_s =20kpc ; α =1 ; ρ_0 = 0.4 GeV/cm3

Let's use this to constrain DM!

Rotation Curves (all matters)

Microlensing optical depth (only compact bodies)

Diffuse components (DM and Gas)

[Binney & Evans '01]

Test failure: 2 sigma overshoot

NFW (α , ρ_0) = (1.8,0.4)

Einasto (α , ρ_0) = (0.05,0.5)

Observational velocity uncertainties: statistical + systematic (average of literature spread in 0.5 kpc bin)

Theoretically reconstructed uncertainties: MACHO 2005 statistical propagated

The constraints that follow are quite <u>conservative</u>

Constraining the parameter space: the "fiducial" configuration

Constraints come from 2.75kpc, 7.75kpc bins, thus no worries about kinematic transformations

Constraints dependence on parameters

What DM configurations can we esclude if we change Solar radius and local velocity?

Rescaling:

- -) rotation curve
- -) baryon modelling
- -) DM halo

Conservative $(r_s, R_0, v_0) = (35, 7.5, 260)$ Mean $(r_s, R_0, v_0) = (20, 8.0, 230)$ Aggressive $(r_s, R_0, v_0) = (10, 8.5, 200)$

Fitting the best DM parameters

using Model 5 (includes gas, best shape fitting)

Excellent agreement with simulation parameter space, And determination of ρ_0 [Catena & Ullio '09]

Adiabatic Contraction the embarassing guest

Concluding

- Combining Microlensing observations of galactic Bulge with observations of rotation curves, possible to have information about DM distribution in the Galaxy
 - Agreement with NFW and Einasto suggested by numerical simulations
 - Rule out extreme flavor of Adiabatic Contraction
 - Using a specific baryonic model, possible to find the best fitting NFW/Einasto parameters, obtaining the 1 σ interval ρ₀=[0.20-0.55] for spherical halos (R₀=8kpc, v₀=230km/s, r_s=20kpc, varying α)

Est via sublimis caelo manifesta sereno Lactea nomen habet, candore notabilis ipso

[Ovidius, Metamorphoses *I-168*]

Updated CMB constraints on DM annihilation cross-sections

Fabío Iocco

Marie Curie fellow at Institut d'Astrophysique de Paris

Based on PRD82 (2009), PRD84 (2011) in collaboration with: G. Bertone, <u>S. Galli</u>, A. Melchiorri

DM annihilation and the IGM (and plenty of time)

GeV -TeV scale

Isotropically averaged cosmological DM annihilation

Smooth component

$$A^{
m sm}(z) = rac{\langle \sigma v
angle}{2 \, m_\chi^2}
ho_{
m DM,0}^2 (1+z)^6$$

Structure component

$$A^{\rm struct}(z) = \frac{\langle \sigma v \rangle}{2 m_{\chi}^2} \int \int dM \frac{dn}{dM} (z, M) (1+z)^3 (4\pi r^2 \rho_i^2(r, M(z))) dr$$

Structure formation history (Press-Schechter / Sheth-Tormen) DM density halo profile Burkert / Einasto / NFW

$$A(z) = \frac{\langle \sigma v \rangle}{2 m_{\chi}^2} \rho_{\mathrm{DM},0}^2 (1+z)^6 \left(1 + \mathcal{B}_{\mathrm{M}}(z)\right)$$

Only after structure formation $z \le \approx 100$

...and its absorption by the surrounding gas (coupling DM induced shower to IGM)

"Opacity window" of the Universe

Photoionization, IC scattering, pair production (on CMB γ and matter), $\gamma\gamma$ scattering

τ constraints (DM annihilations <u>can</u> overproduce free e⁻)

[Cirelli, FI, Panci `09]

Isotropically averaged cosmological DM annihilation

Smooth component

$$A^{
m sm}(z) = rac{\langle \sigma v
angle}{2 \, m_\chi^2}
ho_{
m DM,0}^2 (1+z)^6$$

Structure component

$$A^{\rm struct}(z) = \frac{\langle \sigma v \rangle}{2 m_{\chi}^2} \int \int dM \frac{dn}{dM} (z, M) (1+z)^3 (4\pi r^2 \rho_i^2(r, M(z))) dr$$

Structure formation history (Press-Schechter / Sheth-Tormen) DM density halo profile Burkert / Einasto / NFW

$$A(z) = \frac{\langle \sigma v \rangle}{2 m_{\chi}^2} \rho_{\mathrm{DM},0}^2 (1+z)^6 \left(1 + \mathcal{B}_{\mathrm{M}}(z)\right)$$

Only after structure formation $z \le \approx 100$

Transparency of the Universe & structure formation

HE shower gets efficiently absorbed

at high z

Structure formation takes place in a late Universe (z < 60)

NFW profile

Self-annihilating DM and the IGM

The smooth DM component annihilates with a rate (per volume) (easily re-writable for decaying DM)

$$rac{dI}{dt}(z)=n_{DM}^2(z)\langle\sigma v
angle m_\chi c^2$$

depositing energy in the gas (IGM) at a rate

$$rac{dE}{dt}(z) =
ho_c^2 c^2 \Omega_{DM}^2 (1+z)^6 f rac{\langle \sigma v
angle}{m_\chi}$$

The only DM-related parameter is

$$p_{\rm ann} = f(z) \frac{\langle \sigma v \rangle}{m_{\chi}}$$

Main effect of injected energy: ionization of the IGM

[Galli, FI, Bertone, Melchiorri `09]

Evaluating "f(z)"

Previous analysis based on constant " f " ; not-so-bad! see [Finkbeiner + '11] for PCA motivation of f=f(600) All channels, all secondaries, redshift dependence Branching ratio of DM annihilation crucial for determining absorption

[Slatyer et al. 09]

Self-annihilating DM and the CMB

Degeneracy of p_{ann} with cosmological parameters $(\omega_b, n_s, \omega_{dm})$

[Padmanabhan & Finkbeiner 05]

RUN OF COMPLETE Cosmomc analysis

@ z >1000 , already many e⁻ no effects energy injection is small

[Galli, FI et al. `09,'11]

Constraints from WMAP7+ACT

Similar analysis by [Hutsi et al '11], no ACT data, different f(z)

Forecasts for Planck

Constraining Sommerfeld Enh. with CMB

Comparing constraints

Dwarf-Galaxies constraints on other channels vary, see Llena-Garde, for the Fermi Collaboration

Concluding

- CMB is a powerful tool to constrain DM annihilation properties
- Independent from "usual suspect" unknowns: halo profile, central slope, minimal mass, structure formation history. Cosmology only!
- Exquisite tool to test Sommerfeld enhancement
- If Planck sees something, refrain from rejoying: <u>breath</u> and <u>think</u> before submitting to archive