QCD resummation for Drell-Yan-like processes beyond the Standard Model.

Benjamin Fuks (Universität Freiburg)

In collaboration with:

- ITP Karlsruhe: G. Bozzi, Q. Li,

- LPSC Grenoble / ATLAS collaboration: F. Ledroit, J. Morel,

- LPSC Grenoble / Theory group: M. Klasen.

High energy physics seminar @ IPHC (Strasbourg) March 04, 2008

A 11		

Introduction

- Supersymmetry and the Minimal Supersymmetric Standard Model
- Grand Unified Theories and Z' bosons
- Motivations for resummation calculations

Resummation formalisms

- Transverse-momentum, threshold and joint resummation formalisms
- Matching to the fixed order
- 8 Resummed distributions and theoretical uncertainties
 - Transverse-momentum spectra
 - Invariant-mass distributions
 - Dependence on the factorization and renormalization scales
 - Dependence on the parton densities
 - Uncertainties from non-perturbative effects

Resummation and Monte Carlo generators

- The PYTHIA and MC@NLO frameworks
- Comparison: PYTHIA, MC@NLO and joint resummation

	0000000			U U
Introduction	Resummation	Results - uncertainties	Resummation vs. MC	

Introduction

- Supersymmetry and the Minimal Supersymmetric Standard Model
- Grand Unified Theories and Z' bosons
- Motivations for resummation calculations

Resummation formalisms

- Transverse-momentum, threshold and joint resummation formalisms
- Matching to the fixed order
- 3 Resummed distributions and theoretical uncertainties
 - Transverse-momentum spectra
 - Invariant-mass distributions
 - Dependence on the factorization and renormalization scales
 - Dependence on the parton densities
 - Uncertainties from non-perturbative effects

Resummation and Monte Carlo generators

- The PYTHIA and MC@NLO frameworks
- Comparison: PYTHIA, MC@NLO and joint resummation

• High energy extension to Standard Model.

• Symmetry between fermions and bosons. $Q|Boson\rangle = |Fermion\rangle$ $Q|Fermion\rangle = |Boson\rangle$ where Q is a SUSY generator.

Minimal Supersymmetric Standard Model (MSSM): one SUSY generator.
 ⇒ One SUSY partner for each SM particle.

IntroductionResummationResults - uncertaintiesResummation vs. MCConclusions0000000000000000000000000000

Particle content of the MSSM

Names		particle	spin	superpartner	spin
(s)quarks	Q	$(u_L d_L)$	1/2	$(\tilde{u}_L \tilde{d}_L)$	0
$(\times 3 \text{ families})$	ū	u_R^{\dagger}	1/2	\tilde{u}_R^*	0
	d	d_R^{\dagger}	1/2	\widetilde{d}_R^*	0
(s)leptons	L	(<i>v</i> e _L)	1/2	$(\tilde{\nu} \tilde{e}_L)$	0
$(\times 3 \text{ families})$	ē	e_R^\dagger	1/2	ẽ _R *	0
Higgs(inos)	Hu	$(H_{u}^{+} H_{u}^{0})$	0	$(ilde{H}^+_u ilde{H}^0_u)$	1/2
	H _d	$(H_{d}^{0} H_{d}^{-})$	0	$(\tilde{H}_d^0 \tilde{H}_d^-)$	1/2
gluon/gluino		g	1	ĝ	1/2
W bosons/winos		W^{\pm} , W^{0}	1	$ ilde{W}^\pm$, $ ilde{W}^0$	1/2
B boson / b	ino	В	1	Ĩ	1/2

- Two Higgs doublets (\equiv eight degrees of freedom).
 - \Rightarrow 3 Nambu-Goldstone bosons *eaten* by the Z⁰ and W[±] bosons to get massive.
 - \Rightarrow 5 remaining physical Higgses (h^0 , H^0 , A^0 and H^{\pm}).
- Mixing of gauginos/Higgsinos/sfermions (same electric charge, spin and color).
 - * Charginos: $(\tilde{W}^{\pm}, \tilde{H}^{\pm}_{\{u,d\}}) \Rightarrow (\tilde{\chi}^{\pm}_{1}, \tilde{\chi}^{\pm}_{2}).$
 - * Neutralinos: $(\tilde{B}^0, \tilde{W}^0, \tilde{H}^0_u, \tilde{H}^0_d) \Rightarrow (\tilde{\chi}^0_1, \tilde{\chi}^0_2, \tilde{\chi}^0_3, \tilde{\chi}^0_4).$
 - * Sfermions: $(\tilde{f}_L, \tilde{f}_R) \Rightarrow (\tilde{f}_1, \tilde{f}_2).$

Advantages of the MSSM

- Some advantages
 - * Solution to the hierarchy problem (stabilization of the Higgs mass). [Witten (1981); Kaul (1982)]
 - Gauge coupling unification at high energy (Q ~ 10¹⁶ GeV). [Ibanez, Ross (1981); Dimopoulos, Raby, Wilczek (1981)]
 [Amaldi, de Boer, Fürstenau (1991); Carena, Pokorski, Wagner (1993)]
 - * *R*-parity conservation: $R = (-1)^{(3B+L+2S)}$.
 - \Rightarrow No *B* or *L* violating terms in the Lagrangian (\checkmark proton lifetime).
 - $\Rightarrow \text{Lightest SUSY particle stable and neutral} \Leftrightarrow \text{dark matter candidate.}$ [Goldberg (1983); Ellis *et al.* (1984)]
 - \Rightarrow SUSY particles produced in pairs at colliders.
 - \Rightarrow Large amount of $\not\!\!E_T$ in SUSY decays.
 - * ...
- Problem: SUSY breaking \Rightarrow more than 100 new free parameters.

SUSY breaking

- No SUSY discovery until now:
 - * SUSY must be broken.
 - * SUSY masses at a higher scale than SM masses.
- SUSY breaking:
 - * Is soft (no additional quadratic divergences).
 - * Occurs in a hidden sector.
 - * Mediated through the visible sector via a given interaction.
- Minimal supergravity (mSUGRA):
 - * Breaking to gravitational interaction.
 - * Non renormalizable couplings, suppressed by the Planck mass.
 - * Determined by 5 parameters (m_0 , $m_{1/2}$, A_0 , $\tan \beta$, $\operatorname{sgn}(\mu)$).

Slepton pair production at hadron colliders

- Drell-Yan-like process.
- Tree-level Feynman diagrams:

$$q \bar{q}
ightarrow \gamma, Z^0
ightarrow \tilde{l}_i \tilde{l}_i^*$$
 and $q \bar{q}'
ightarrow W^{\mp}
ightarrow \tilde{l}_i \tilde{\nu}_l^* + c.c.$

- Sleptons are often light \Rightarrow decays into LSP + SM lepton \Rightarrow clean signal.
- Large background from *WW* and $t\bar{t}$ production. \Rightarrow Importance of accurate theoretical predictions.

Grand Unified Theories and Z' bosons (1)

- Motivation: unification of the Standard Model (SM) gauge groups: \Rightarrow Simple Lie group $G \supset SU(3)_C \times SU(2)_L \times U(1)_Y$.
- Breaking to the SM at high energy scale: \Rightarrow Appearance of additional U(1) symmetries \Leftrightarrow extra neutral gauge bosons Z'.
- Theoretical model: [Green, Schwarz (1984); Hewett, Rizzo (1989)]
 - * Ten-dimensional string theories $E_8 \times E_8$:
 - ◊ Anomaly-free.
 - ♦ Contains chiral fermions (as in the SM).
 - * Compactified to E₆.
 - * Breaking to the SM gauge groups:

 $\begin{array}{rcl} E_6 & \rightarrow & SO(10) \times U(1)_{\psi} \\ & \rightarrow & SU(5) \times U(1)_{\chi} \times U(1)_{\psi} \end{array}$

- $\rightarrow \quad SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_\chi \times U(1)_\psi.$
- * Additional bosons Z_{ψ} and Z_{χ} .
- * Mixing between Z_{ψ} , Z_{χ} and Z.

Grand Unified Theories and Z' bosons (2)

• Toy model:

* Considered gauge group:

 $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_\chi \times U(1)_\psi.$

* No mixing between U(1)-bosons $\Rightarrow Z^0 \equiv Z^{SM}$, $Z' \equiv Z_{\chi}$, $Z'' \equiv Z_{\psi}$.

* Unification of coupling constants: $\Rightarrow g_{\chi} (\equiv U(1)_{\chi})$ related to g', g and $e (\equiv SM)$:

$$g_{\chi} = \sqrt{\frac{5}{3}}g' = \sqrt{\frac{5}{3}}g \tan \theta_W = \sqrt{\frac{5}{3}}\frac{e}{\cos \theta_W}$$

• One single free parameter: the Z' mass.

- Drell-Yan-like process.
- Tree-level Feynman diagrams:

$$q\bar{q}
ightarrow \gamma, Z^0, Z'
ightarrow I\bar{I}.$$

- Signal: additional peak in the Drell-Yan spectrum (clean).
- Irreducible background fron SM Drell-Yan.

 Introduction
 Resultmation
 Results - uncertainties
 Resummation vs. MC
 Conclusions

 Next-to-leading order calculations
 Conclusions
 Conclusions

• (SUSY-)QCD one-loop Feynman diagrams:

• Real gluon emission and quark-gluon initiated Feynman diagrams:

• Z' production: - Same diagrams except for the SUSY loops. - Sleptons are replaced by leptons.
 Introduction
 Resummation
 Results - uncertainties
 Resummation vs. MC
 Conclusions

 000000000
 0000000
 00000
 0000
 0
 0

Soft and collinear radiation - need for resummation

• Partonic invariant-mass and transverse-momentum distributions at $\mathcal{O}(\alpha_s)$:

$$\begin{array}{ll} \frac{\mathrm{d}\hat{\sigma}_{ab}}{\mathrm{d}M^2} & = & \hat{\sigma}_{ab}^{(0)}(M)\,\delta(1-z) + \frac{\alpha_s}{\pi}\,\hat{\sigma}_{ab}^{(1)}(M,z) + \mathcal{O}(\alpha_s^2), \\ \\ \frac{\mathrm{d}^2\hat{\sigma}_{ab}}{\mathrm{d}M^2\,\mathrm{d}q_T^2} & = & \hat{\sigma}_{ab}^{(0)}(M)\,\delta(q_T^2)\delta(1-z) + \frac{\alpha_s}{\pi}\,\hat{\sigma}_{ab}^{(1)}(M,z,q_T) + \mathcal{O}(\alpha_s^2), \end{array}$$

where $z = M^2/s$.

- Soft and collinear radiation:
 - * $\alpha_s^n \left(\frac{\ln^m(1-z)}{1-z}\right)_+$ and $\frac{\alpha_s^n}{q_T^2} \ln^m \frac{M^2}{q_T^2}$ terms in the distributions $(m \le 2n-1)$.
 - * Large at small q_T or $z \lesssim 1$.
 - * Fixed-order theory unreliable in these kinematical regions.

Resummation to all orders needed.

- * q_T , threshold, or joint resummation.
- * Reliable perturbative results.
- * Correct quantification of the soft-collinear radiation.

Introduction 000000000	Resummation	Results - uncertainties 000000	Resummation vs. MC 0000	

Introduction

- Supersymmetry and the Minimal Supersymmetric Standard Model
- Grand Unified Theories and Z' bosons
- Motivations for resummation calculations

Resummation formalisms

- Transverse-momentum, threshold and joint resummation formalisms
- Matching to the fixed order
- 3 Resummed distributions and theoretical uncertainties
 - Transverse-momentum spectra
 - Invariant-mass distributions
 - Dependence on the factorization and renormalization scales
 - Dependence on the parton densities
 - Uncertainties from non-perturbative effects

Resummation and Monte Carlo generators

- The PYTHIA and MC@NLO frameworks
- Comparison: PYTHIA, MC@NLO and joint resummation

- - Reorganization of the cross section:

$$\mathrm{d}\sigma = \mathrm{d}\sigma^{(\mathrm{res})} + \mathrm{d}\sigma^{(\mathrm{fin})}$$

- $d\sigma^{(res)}$:
 - * Contains all the logarithmic terms.
 - * Resummed to all orders in α_s .
 - * Exponentiation (Sudakov form factor).
- $d\sigma^{(fin)}$:
 - * Remaining contributions.

Conjugate spaces: definitions

- Conjugate space(s) introduced:
 - * Kinematics naturally factorizes.
 - * Hadronic cross sections: convolutions \rightarrow products.
- Mellin transform ($\equiv N$ -moments):

$$F(N) = \int_0^1 \mathrm{d}y \, y^{N-1} \, F(y).$$

* N variable conjugate to $au=M^2/s_h.$

• Fourier transform:

$$F(b) = \int_0^\infty \mathrm{d}x \, e^{-ibx} \, F(x).$$

- * q_T -spectrum only.
- * Impact-parameter b conjugate to q_T .
- The logarithms:

$$\begin{aligned} & \left(\frac{\ln(1-z)}{1-z}\right)_+ \quad \to \quad \ln^2 \overline{N} \text{ with } \overline{N} = N \exp[\gamma_E] \ , \\ & \frac{1}{q_T^2} \ln \frac{M^2}{q_T^2} \quad \to \quad \ln \overline{b}^2 \text{ with } \overline{b} = \frac{b M}{2} \exp[\gamma_E] \ . \end{aligned}$$

Introduction Resummation Results - uncertainties Resummation vs. MC Conclusions Conjugate spaces: factorization 6000000 6000000 600000 6000000 6000000 6000000 6000000 6000000 6000000 6000000 60000000 60000000 60000000 6000000

Mass spectrum:

$$\frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}M^2}(\tau) = \sum_{a,b} \iint \mathrm{d}x_a \,\mathrm{d}x_b \,f_{a/h_1}(x_a) \,f_{b/h_2}(x_b) \,\hat{\sigma}^{(\mathrm{res})}_{ab}(z)$$

$$\downarrow$$

$$\frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}M^2}(N) = \sum_{a,b} f_{a/h_1}(N+1) \,f_{b/h_2}(N+1) \,\hat{\sigma}^{(\mathrm{res})}_{ab}(N).$$

q_T-spectrum:

The logarithms are included in the functions ô^(res) and W^F.
 (Ξ partonic cross sections).

The resummed partonic cross sections

• The process-dependence is factorized outside the exponent:

$$\begin{aligned} \mathcal{W}_{ab}^{F}(N,b) &= \mathcal{H}_{ab}^{F}(N) \exp\left\{\mathcal{G}(N,b)\right\}, \\ \hat{\sigma}_{ab}^{(\mathrm{res})}(N) &= \sigma^{(LO)} \, \tilde{C}_{ab}(N) \exp\left\{\mathcal{G}(N)\right\}. \end{aligned}$$

• \mathcal{H}^{F} - and \tilde{C} :

- * Can be computed perturbatively as series in α_s .
- * Are process-dependent.
- * Contain all the finite terms in the limits $N \to \infty$ and $b \to \infty$. (\equiv real and virtual collinear radiation, hard contributions).
- The Sudakov form factor \mathcal{G} :
 - * Can be computed perturbatively as series in $\alpha_s L$ ($L \equiv \ln[...]$).
 - * Is process-independent (universal).
 - * Contain the soft-collinear radiation.

$$\mathcal{G}(N,L) = Lg^{(1)}(\alpha_{s}L) + \sum_{n=2}^{\infty} \left(\frac{\alpha_{s}}{\pi}\right)^{n-2} g_{N}^{(n)}(\alpha_{s}L).$$

Resummation 0000●000		
 1.1		

- The logarithms
 - Exact expressions of the logarithms in conjugate space(s):

	qт	Joint	Threshold
$L = \ln()$	$\overline{b}^2 + 1$	$ar{b}+rac{ar{N}}{1+rac{ar{b}}{4ar{N}}}$	Ñ

- Logarithms for *q*_T-resummation:
 - * In \bar{b}^2 large at small $b \ (\equiv \text{ large } q_T)$.
 - * Resummation not justified at small b.
 - * $\ln \bar{b}^2 \rightarrow \ln \left[\bar{b}^2 + 1 \right].$
 - $\diamond \text{ No change at large } b.$
 - \diamond Resummation effects suppressed at small b.
- Logarithms for joint resummation:
 - * q_T and threshold resummation limits reproduced for large \bar{b} and \bar{N} .
 - * No subleading terms in perturbative expansions of $\sigma^{(\mathrm{res})}$.

References

- q_T-resummation [Catani, de Florian, Grazzini (2001); Bozzi, Catani, de Florian, Grazzini (2006)]
 - * Universal formalism \equiv process-independent Sudakov form factor.
 - * Resummation impact only in the relevant kinematical region.
- Threshold resummation [Sterman (1987); Catani, Trentadue (1989,1991)]
 - * Consistent inclusion of the collinear radiation in the \tilde{C} -function. [Krämer, Laenen, Spira (1998); Catani, de Florian, Grazzini (2001)]
- Joint resummation [Bozzi, BF, Klasen (2008)]
 - * Universal formalism \equiv process-independent Sudakov form factor.
 - * Correct perturbative expansion of the resummed cross section. [Kulesza, Sterman, Vogelsang (2002)]

Matching to the fixed order

- Fixed-order calculations:
 - * Reliable far from the critical kinematical regions ($z \ll 1$, $q_T \gg 0$).
 - * Spoiled in the critical regions ($z \sim 1$, $q_T \sim 0$).
- Resummation calculations:
 - * Needed in the critical regions.
 - * Not justified far from the critical regions.
- Intermediate kinematical regions:
 - * Both fixed order and resummation contribute.
- Information from both fixed order and resummation is required.
 - No double-counting.
 - \Rightarrow Consistent matching procedure.

The matching procedure

- Matching procedure:
 - * Adding both resummation and fixed-order results.
 - * Subtracting the expansion in α_s^m of the resummed result.
 - * No double-counting of the logarithms.
 - \Rightarrow Consistent matching.

• Invariant-mass and transverse momentum spectra:

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}M^2}(\tau) &= \frac{\mathrm{d}\sigma^{(\mathrm{F.O.})}}{\mathrm{d}M^2}(\tau) + \oint_{C_N} \frac{\mathrm{d}N}{2\pi i} \tau^{-N} \Big[\frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}M^2}(N) - \frac{\mathrm{d}\sigma^{(\mathrm{exp})}}{\mathrm{d}M^2}(N) \Big], \\ \frac{\mathrm{d}^2\sigma}{\mathrm{d}M^2 \,\mathrm{d}q_T^2}(\tau, q_T) &= \frac{\mathrm{d}^2\sigma^{(\mathrm{F.O.})}}{\mathrm{d}M^2 \,\mathrm{d}q_T^2}(\tau, q_T) + \oint_{C_N} \frac{\mathrm{d}N}{2\pi i} \tau^{-N} \int \frac{b\mathrm{d}b}{2} J_0(q_T b) \\ &\times \Big[\frac{\mathrm{d}^2\sigma^{(\mathrm{res})}}{\mathrm{d}M^2 \,\mathrm{d}q_T^2}(N, b) - \frac{\mathrm{d}^2\sigma^{(\mathrm{exp})}}{\mathrm{d}M^2 \,\mathrm{d}q_T^2}(N, b) \Big]. \end{aligned}$$

Summary:

- * Far from the critical regions, $d\sigma^{(res)} \approx d\sigma^{(exp)} \equiv$ perturbative theory.
- * In the critical regions, $d\sigma^{(F.O.)} \approx d\sigma^{(exp)} \equiv$ pure resummation.
- * In the intermediate regions: both contribute.

Introduction

- Supersymmetry and the Minimal Supersymmetric Standard Model
- Grand Unified Theories and Z' bosons
- Motivations for resummation calculations

Resummation formalisms

- Transverse-momentum, threshold and joint resummation formalisms
- Matching to the fixed order
- Resummed distributions and theoretical uncertainties
 - Transverse-momentum spectra
 - Invariant-mass distributions
 - Dependence on the factorization and renormalization scales
 - Dependence on the parton densities
 - Uncertainties from non-perturbative effects

Resummation and Monte Carlo generators

- The PYTHIA and MC@NLO frameworks
- Comparison: PYTHIA, MC@NLO and joint resummation

Transverse-momentum spectra

- SPS1a and BFHK-B SUSY scenarios (slepton masses \approx 100-200 GeV).
- Resummation effects:
 - * Finite results at small q_T.
 - * Resummation effects important even at intermediate q_T .
- Threshold-enhanced contributions: small effects in the intermediate- q_T region.

- SPS1a and BFHK-B SUSY scenarios (slepton masses \approx 100-200 GeV).
- Reduced SUSY-loop effects.
- Resummation effects:
 - * Small *M*: $d\sigma^{(res)} \approx d\sigma^{(exp)} \equiv$ perturbative theory.
 - * Large M: $d\sigma^{(F.O.)} \approx d\sigma^{(exp)} \equiv pure resummation.$
- Joint vs. threshold resummation: differences under control.

[Bozzi, BF, Klasen (2006); BF, Klasen, Ledroit, Li, Morel (in press)]

- SPS1a SUSY scenario (slepton masses \approx 100-200 GeV); Z' mass of 1 TeV.
- q_T -spectrum (integrated over M, $M/2 \le \mu_R, \mu_F \le 2M$).:

⁶ Improvement of scale dependence: (from 10% to 5%).

- Total cross section (integrated over q_T and M, 900 GeV $\leq M \leq$ 1200 GeV):
 - * Leading order: full dependence related to μ_F (~ 7%).
 - * Next-to-leading order: introduction of μ_R and the qg channel (~ 17%).
 - * Resummation: reduction of scale dependence ($\sim 9\%$).

- Z' mass of 1 TeV.
- CTEQ vs. MRST: different parameterizations of the densities.
 - * Mass-spectrum: different shapes.
 - * q_T -spectrum: similar shapes but a bit harder for MRST.
- Uncertainties induced by variations along 20 directions for the CTEQ densities:
 - * Modest uncertainties (\sim 10%).
 - * Similar to scale dependence.

Uncertainties from non-perturbative effects (1)

- Important non-perturbative (NP) effects for q_T -distributions (large-*b* region).
 - * Intrinsic q_T of the partons inside the hadrons.
 - * Modification of the resummation formula

$$\mathcal{H}_{ab}^{\mathsf{F}}(N)\exp\Big\{\mathcal{G}(N,b)\Big\} \to \mathcal{H}_{ab}^{\mathsf{F}}(N)\exp\Big\{\mathcal{G}(N,b)+\mathcal{F}_{ab}^{\mathrm{NP}}\Big\}.$$

- NP form factors obtained from experimental data:
 - * Ladinsky-Yuan (LY-G) [Ladinsky, Yuan (1994)].
 - * Brock-Landry-Nadolsky-Yuan (BLNY) [Landry, Brock, Nadolsky, Yuan (2003)].
 - * Konyshev-Nadolsky (KN) [Konyshev, Nadolsky (2006)].

- SPS1a SUSY scenario (slepton masses \approx 100-200 GeV); Z' mass of 1 TeV.
- Importance of the NP effects:

$$\Delta = rac{d\sigma^{({
m res.+NP})} - d\sigma^{({
m res.})}}{d\sigma^{({
m res.})}}.$$

• Non-perturbative effects under good control for $q_T > 5$ GeV.

0			
		Resummation vs. MC	

Introduction

- Supersymmetry and the Minimal Supersymmetric Standard Model
- Grand Unified Theories and Z' bosons
- Motivations for resummation calculations

Resummation formalisms

- Transverse-momentum, threshold and joint resummation formalisms
- Matching to the fixed order
- 3 Resummed distributions and theoretical uncertainties
 - Transverse-momentum spectra
 - Invariant-mass distributions
 - Dependence on the factorization and renormalization scales
 - Dependence on the parton densities
 - Uncertainties from non-perturbative effects

Resummation and Monte Carlo generators

- The PYTHIA and MC@NLO frameworks
- Comparison: PYTHIA, MC@NLO and joint resummation

The PYTHIA Monte Carlo generator: parton showering

[Sjöstrand, Mrenna, Skands (2006)]

- Space-like initial-state showers:
 - * At the branching $a \rightarrow bc$,
 - $\diamond~$ a and b have virtualities $Q^2_{\{a,b\}}\!=\!-p^2_{\{a,b\}}\!>\!0$ and c, $Q^2_c\!=\!p^2_c\!\geq\!0.$
 - ♦ $Q_a < Q_b \Rightarrow$ increasing virtualities \Rightarrow iterations until the scale Q_{\max} .
 - \diamond *c* is time-like \Rightarrow decreasing virtualities to the cut-off Q_0 .
 - ♦ The branching rates depend on the Sudakov form factor.
 - * Backwards evolution scheme:
 - $\diamond~$ Start from the hard-scattering partons at ${\it Q}_{\rm max}$ and stop at ${\it Q}_{0.}$.
 - $\diamond~$ Reconstruction of the preceding branching.
 - \Rightarrow falling sequence of virtualities.

• PYTHIA \equiv leading order + leading logarithms + momentum-conservation.

The PYTHIA MC generator: the power shower

- $Q_0 \approx 1$ GeV, close to typical hadron mass.
- Q_{\max} is not uniquely defined
 - * Can match the hard scale \Rightarrow too soft q_T -spectrum.
 - * Can be increased to the hadronic center-of-mass energy \Rightarrow power shower.
- Power shower:
 - * Need to be matched to matrix elements (hard parton emission). \equiv Inclusion of correction factors.
 - * Problem with respect to the QCD factorization theorem.
 - * Better agreement with matrix elements results at high- q_T .

[Miu, Sjöstrand (1999)]

The MC@NLO Monte Carlo generator

[Frixione, Webber (2002)]

- Initial-state parton showers with HERWIG: [Corcella et al. (2001)]
 - * The branchings are ordered by emission angles.
 - ♦ Determined from the Sudakov form factor.
 - ♦ Backwards evolution scheme.
 - \diamond The minimum value is determined by the cut-off Q_0 .
 - * Non-perturbative stage below Q₀: Forced splittings of gluons and sea quarks.
- Matching to matrix elements to include hard/wide-angle radiation.
 - * Next-to-leading order (NLO) matrix elements.
 - * Need for a prescription to avoid double-counting (soft-collinear emission).
 - $\diamond~$ Two samples, with and without prior NLO real emission.
 - ◊ Based on dipole subtraction method.
 - \Rightarrow Monte Carlo counterterm.
 - \Rightarrow Two non-divergent samples and no double-counting.
- MC@NLO \equiv next-to-leading order + leading logarithms.

- 1 TeV Z'; PYTHIA (LO/LL₊), MC@NLO (NLO/LL), resummation (NLO/NLL).
- Mass-spectrum normalized to leading order:
 - * PYTHIA (power shower): mass-spectrum multiplied by a K-factor of 1.26.
 - * Good agreement between MC@NLO and resummation.
- Transverse-momentum distribution:
 - * PYTHIA spectrum much too soft, peak not well predicted.
 - * Good agreement between MC@NLO and resummation.

		Conclusions O

Introduction

- Supersymmetry and the Minimal Supersymmetric Standard Model
- Grand Unified Theories and Z' bosons
- Motivations for resummation calculations

Resummation formalisms

- Transverse-momentum, threshold and joint resummation formalisms
- Matching to the fixed order
- 3 Resummed distributions and theoretical uncertainties
 - Transverse-momentum spectra
 - Invariant-mass distributions
 - Dependence on the factorization and renormalization scales
 - Dependence on the parton densities
 - Uncertainties from non-perturbative effects

Resummation and Monte Carlo generators

- The PYTHIA and MC@NLO frameworks
- Comparison: PYTHIA, MC@NLO and joint resummation

- Considered processes: slepton-pair and Z' production at hadron colliders.
- Soft and collinear radiation:
 - * Large logarithmic corrections in q_T and invariant-mass spectra.
 - * Need to be resummed to all orders in α_s .
- q_T , threshold and joint resummations have been implemented.
 - * Reliable perturbative results.
 - * Correct quantification of the soft-collinear radiation.
 - * Important effects, even far from the critical regions.
 - * Uncertainties from scales and parton densities under good control.
 - * Reduced dependence on non-perturbative effects.
- Check of Monte Carlo generators
 - * Significant shortcomings in normalization and shapes for PYTHIA.
 - * MC@NLO reaches (almost) the same precision level as resummation. BUT: easier implentation in the analysis chains of any experiment.
- Download links for the MC@NLO and resummation codes:
 - * http://lpsc.in2p3.fr/klasen/software/
 - * http://pheno.physik.uni-freiburg.de/~fuks/resum.html