Neutrino Astrophysics The High Energy Frontier

Thierry Pradier

pradier@in2p3.fr Université de Strasbourg & IPHC/DRS (IN2P3)

イロト イヨト イヨト イヨト

æ

Introduction		
A bit of History		

• Fermion

- Weak Interactions : exchange of Boson W, Z
- \Rightarrow escapes dense regions
 - Elementary particle : no compositeness, no decay
 - Mass close to zero
- \Rightarrow velocity *c*
 - Neutral particle
- \Rightarrow no effect of magnetic fields

・ロト ・四ト ・ヨト ・ヨト

Introduction		
A bit of History		

A brief history of neutrinos...

 1930 : Pauli invents the neutrino to explain β decay...I have done something very bad today by proposing a particle that cannot be detected ; it is something no theorist should ever do.

- 1933 : Fermi develops the theory of the little neutron (neutrino), discovered in 1932 by Chadwick
- 1953 : Experimental observation at Savannah River (Reines & Cowan) through $\bar\nu+p\to e^++n$

・ロト ・四ト ・ヨト ・ヨト

Introduction		
A bit of History		

A brief history of neutrinos...

• 1968 : Solar Neutrinos observed at Homestake (Davis) - only the third of expectations...(see A. Meregaglia's lecture yesterday)

1987 : SN1987A in Large Magellanic Could

イロン イ団 とく ヨン イヨン

э

Introduction			
A bit of Histo			
Introdu	ction		

A brief history of neutrinos...

- 1968 : Solar Neutrinos observed at Homestake (Davis) only the third of expectations...(see A. Meregaglia's lecture yesterday)
- 1987 : SN1987A in Large Magellanic Could

・ロト ・回ト ・ヨト ・ヨト

Introduction			
A bit of Histo			
Introdu	ction		

Birth of Neutrino Astronomy!

ヘロト ヘロト ヘヨト ヘヨト

э.

<ロト <回ト < 回ト < 回ト :

A bit of History

Neutrinos as Cosmic Messengers...

What about neutrinos...

• If $E_{\nu} \approx 10 GeV - 10^2 EeV$, same span as Radio-X-rays in EM radiation !

・ロト ・ 一下・ ・ ヨト・

A bit of History

Neutrinos as Cosmic Messengers...

- Protons : deflected by magnetic fields (*E_p* < 10¹⁹ *GeV*); UHE interact with CMB photons (*L* ~ 30*Mpc*)
- Neutrons : decay ($\mathcal{L} \sim 10 kpc$ at $E \sim EeV$)
- Photons : interact with ExtraGalactic Background Light $(\mathcal{L} \sim 100 Mpc)$ and CMB $(\mathcal{L} \sim 10 kpc)$
- Neutrinos : neutral, weakly interacting...

Introduction Neutrinos and Cosmic-Rays Neutrino Telescopes IceCube and Antares Surprises I A bit of History Neutrinos and other messengers

Neutrinos as Cosmic Messengers...

Compute a mean free path?

•
$$\mathcal{L} \approx \frac{1}{n_{\mathrm{target}} \times \sigma_{\mathrm{process}}}$$

| 4 回 1 | 4 三 1 | 4 三 1

æ

A bit of History

Neutrinos as Cosmic Messengers...

Compute a radius of curvature

•
$$\vec{F} = q(\vec{v} \times \vec{B}) \Rightarrow rac{mv_{\perp}^2}{R_L} = qv_{\perp}B \Rightarrow R_L(m) \sim 3.3 rac{p(GeV/c)}{ZeB} \propto rac{E}{ZeBc}$$

Neutrino Telescopes

IceCube and Antares

Surprises

A bit of History

Neutrinos as Cosmic Messengers...

How are they detectable?

• Requires large volume of detection...

Th. Pradier (University of Strasbourg)

ESC 2011 - Neutrino Astrophysics

わく(~ 4 / 49

Sources of neutrinos...

- Under rock
- Under water/ice
- Acoustics/Radio
- Giant Air Shower

<ロト <回ト < 回ト < 回ト :

크

 Introduction
 Neutrinos and Cosmic-Rays
 Neutrino Telescopes
 IceCube and Antares
 Surprises!

 A bit of History
 Neutrinos and other messengers

The far end of the spectrum...

- Guaranteed source of UHE neutrinos...
- [Exercise] Threshold $\gamma_{
 m CMB} + p
 ightarrow \Delta
 ightarrow \pi + N pprox 10^{20} eV$
- Flux : less than $100/km^2/yr$!

< ロ > < 回 > < 回 > < 回 > < 回 >

Neutrino Telescopes

IceCube and Antares

Surprises

A bit of History

Atmospheric neutrinos

log(E, /GeV)

< □ > < □ > < □ > < □ > < □ >

Background for detection of astrophysical neutrinos !

High-Energy Neutrinos : The Cosmic-Ray Connection

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

æ

Neutrinos and Cosmic-Rays		

Leptonic Production of HE γ :

Hadronic Production of HE γ /CRs :

$$\begin{array}{ccccc} p/A + p/\gamma & \longrightarrow & \pi^0 & \pi^\pm \\ & \downarrow & \downarrow \\ & \gamma\gamma & \mu \nu_\mu \\ & \downarrow \\ & \nu_\mu \nu_e e \end{array}$$

イロン イ団 とく ヨン イヨン

э

Neutrinos and Cosmic-Rays		

Hadronic Production of HE γ /CRs :

$$\begin{array}{cccc} p/A + p/\gamma & \longrightarrow & \pi^0 & \pi^\pm \\ & \downarrow & \downarrow \\ & \gamma\gamma & \mu \nu_\mu \\ & \downarrow \\ & \nu_\mu \nu_e e \end{array}$$

イロト イポト イヨト イヨト

Neutrinos are the smoking gun of hadronic processes

Neutrinos and Cosmic-Rays		

$\mathsf{Multi-wavelength}/\mathsf{messenger} \text{ analysis} \Rightarrow \mathsf{Modelling} \text{ of the source}$

1000 1 1 2 1 1 2 1

Neutrinos and Cosmic-Rays		

See lecture on Cosmic-Ray Physics by R. Engel on Monday

Th. Pradier (University of Strasbourg)

ESC 2011 - Neutrino Astrophysic

Fermi processes for Acceleration

Spectrum

- $\frac{dN}{dE} \propto E^{-\gamma}$, with $1.5 < \gamma < 2.5$
- [Exercise] Demonstrate Gain of Energy and Power-Law...

<ロト <回ト < 三ト < 三ト

	Neutrinos and Cosmic-Rays		
Fermi Mechanism			

Fermi processes for Acceleration

Maximum Energy

- From Maxwell $\vec{\nabla} \times \vec{E} = -\frac{\partial B}{\partial t} \Rightarrow E = Bc$
- $E_{\max} = \gamma mc^2 = \int ZeEdx = ZeBcL$
- Impose $L < R_L \Rightarrow E_{max} \sim ZBL$ with L size of accelerating region

イロト イヨト イヨト イヨト

- \Rightarrow Compact sources...
 - Ultra-Relativistic shocks : $E_{\rm max} \sim \Gamma ZBL$

Neutrinos and Cosmic-Rays		
Different Scenarios		

Leptonic/Hadronic?

Leptonic scenario

- *e* accelerated via Fermi mechanism
- X-Rays, observed, produced via synchrotron : $e^{\pm}\vec{B} \rightarrow e^{\pm}\gamma_X$
- HE γ -rays by Inverse Compton : $e^{\pm}\gamma_{\rm low \ E} \rightarrow e^{\pm}\gamma_{\rm high \ E}$
- No neutrinos !

・ロト ・四ト ・ヨト ・ヨト

Neutrinos and Cosmic-Rays		
Different Scenarios		

Leptonic/Hadronic?

Hadronic scenario Protons and Heavy nuclei (observed !) accelerated via Fermi mechanism Interaction with ambient photons : • $p + \gamma/A \rightarrow \Delta^+ \rightarrow \pi^0 + p$ • $p + \gamma/A \rightarrow \Delta^+ \rightarrow \pi^+ + n$ • γ -rays via $\pi^0 \rightarrow \gamma \gamma$ Neutrinos via $\pi^+ \rightarrow \mu^+ \nu_\mu \rightarrow e^+ \nu_e \bar{\nu}_\mu \nu_\mu$

・ロト ・四ト ・ヨト ・ヨト

э

Neutrinos and Cosmic-Rays		
Different Scenarios		

A Hadronic origin for γ emission?

The case of RXJ 1713-3946

- Purely leptonic models not satisfactory
- Proton acceleration + beam dump on nearby molecular clouds?

Berezhko & Völk, arXiv-08100988v2

Th. Pradier (University of Strasbourg)

ESC 2011 - Neutrino Astrophysics

13 / 49

A Hadronic origin for γ emission?

See Lecture on γ -Ray Astronomy by M. Lemoine-Goumard on Tuesday

<ロト <回ト < 回ト < 回ト :

Neutrinos and Cosmic-Rays		
	lactic Sources	

イロト イポト イヨト イヨト

Neutrinos and Cosmic-Rays		

AGNs - Studied at Observatoire de Strasbourg

- High Luminosity compact region at the centre of some galaxies...
- Supermassive Black Holes accreting matter?
- Same object with different features, depending of angle of jet : Blazars (BL Lac, FSRQs,...) have jet towards earth
- Results of the Pierre Auger Observatory...

イロト イポト イヨト イヨト

Neutrinos and Cosmic-Rays		

UHECRs and AGNs - 2007 Results

- 20 out of 27 CRs with E > 57 EeV correlate within 3.2° with nearby AGNs from Véron-Cetty&Véron Catalogue (292 AGNs with D < 75 Mpc)
- Significance of effect has decreased with time...(68% to 38%)
- ... VCV Catalogue incomplete
- Correlation is not a proof of causality !

| 4 回 1 | 4 三 1 | 4 三 1

Neutrinos and Cosmic-Rays		

UHECRs and AGNs - 2007 Results

- 20 out of 27 CRs with E > 57 EeV correlate within 3.2° with nearby AGNs from Véron-Cetty&Véron Catalogue (292 AGNs with D < 75 Mpc)
- Significance of effect has decreased with time...(68% to 38%)
- ... VCV Catalogue incomplete
- Correlation is not a proof of causality !

イロト イヨト イヨト イヨト

Neutrinos and Cosmic-Rays		

Gamma-Ray Bursters...

2704 BATSE Gamma-Ray Bursts

イロト 不得下 イヨト イヨト

Gamma-Ray Bursts

- Isotropic in Distribution..
- Cosmological : most distant $z \sim$ 9, $D \sim 13 Gpc$
- Energy released up to $10^{55} erg pprox 10^{22} L_{\odot}$

Neutrinos and Cosmic-Rays		
	Extra-Gal	

Gamma-Ray Bursters...

Short GRBs

Binary Mergers : BH or NS

Long GRBs

Collapsars - massive star collapse

イロト イヨト イヨト イヨト

Neutrinos and Cosmic-Rays		
	lactic Sources	

Upper Bounds

Bounds for extra-galactic sources

- Waxman-Bahcall upper bound :
 - $E^2 \frac{dN}{dE} \approx 10^{44} erg/Mpc^3/yr$ from observed CR fluxes
 - Assume optically thin sources and evolution with z
- Mannheim, Protheroe, Rachen (MPR) Bound :
 - Different injection spectra, optically thin/hidden sources

ト・モー

Neutrinos and Cosmic-Rays		

Upper Bounds

Bounds for extra-galactic sources

- Optical depth $\frac{1}{I_0} = e^{-\tau}$, measures how opaque is a medium to a radiation
- $dl = -\kappa \rho I dl$, with κ opacity in cm^2/g , ρ density of medium
- Finally $\mathcal{L} = \frac{1}{\kappa\rho}$ and $\tau = \int \kappa\rho dl = \int n\sigma dl$, with *n* number density, σ cross-section
- \Rightarrow τ = number of mean free paths through medium
 - Optically thin $\tau \ll 1$
 - 1 km of Earth atmosphere : $\kappa \sim 10^{-4} {\it cm}^2/{\it g}, \, \rho \sim 10^{-3} {\it g}/{\it cm}^3,$ $\tau \sim 10^{-2}$
 - \Rightarrow Double the material, double the exctinction
 - Optically thick $\tau \gg 1$
 - 1 km of polluted city atmosphere : $\kappa\sim 0.1 cm^2/g,\,\rho\sim 10^{-3}g/cm^3,\,\tau\sim 10$
 - $\Rightarrow\,$ No radiation, except outer layers and blackbody

Neutrinos and Cosmic-Rays		
	Extra-Gal	

Upper Bounds

Bounds for extra-galactic sources

- Controversial but $E_{
 u}^2 \Phi_{
 u} \lesssim 10^{-8} GeV.cm^{-2}.s^{-1}.sr^{-1}$
- $\Phi_{\gamma}^{\text{Crab}}(E > 1 \text{TeV}) \approx 10^{-11} \text{cm}^{-2}.\text{s}^{-1}...$
- With a ν cross-section $\in 10^{-35} 10^{-33} cm^2$ for $E \sim 1 TeV 1 PeV$...

 \Rightarrow Needs large detection volumes!

Neutrinos and Cosmic-Rays		

The TeV Gamma-Ray Sky

Th. Pradier (University of Strasbourg)

ESC 2011 - Neutrino Astrophysics

Neutrinos and Cosmic-Rays		

The TeV Gamma-Ray Sky

How to compute a ν Flux from γ -Ray Observations

- Hypothesis : TeV emission dominated by π^0 decay...
- \bullet Parametrisation of π production in hadronic interactions
- Proton Injection Spectra $\frac{N_p}{E_p} = k_p \left(\frac{E_p}{1TeV}\right)^{-\alpha} e^{-\frac{E_p}{e_p}}$ (cut-off)
- Results in :

$$\frac{N_{\gamma/\nu}}{E_{\gamma/\nu}} = k_{\gamma/\nu} \left(\frac{E_{\gamma/\nu}}{1 \, TeV}\right)^{-\Gamma_{\gamma/\nu}} e^{-\sqrt{\frac{E_{\gamma/\nu}}{\epsilon_{\gamma/\nu}}}}$$

- $k_{\nu} \approx (0.71 0.16\alpha)k_{\gamma}$, $\Gamma_{\nu} \approx \Gamma_{\gamma} \approx \alpha 0.1$, $\epsilon_{\nu} = 0.59\epsilon_{\gamma} \approx \epsilon_p/40$
- Assumptions : no γ absorption, low radiation and matter density, weak $\vec{B}...$

ヘロト ヘヨト ヘヨト
Introduction Ne	eutrinos and Cosmic-Rays		

The TeV Gamma-Ray Sky

How to compute a ν Flux from γ -Ray Observations

$$\frac{N_{\gamma/\nu}}{E_{\gamma/\nu}} = k_{\gamma/\nu} \left(\frac{E_{\gamma/\nu}}{1 \, TeV}\right)^{-\Gamma_{\gamma/\nu}} e^{-\sqrt{\frac{E_{\gamma/\nu}}{\epsilon_{\gamma/\nu}}}}$$

< □ > < □ > < □ > < □ > < □ >

Neutrinos and Cosmic-Rays		

MicroQuasars - Studied at Observatoire de Strasbourg

- Compact Object (BH or NS) fed by a massive star
- Particles accelerated in jets or in accretion disk
- Nature or primary particles unknown !
- A few of them observed in γ : HESS, MAGIC, VERITAS
- LS5039 : Phasogramm shows orbital motion in flux and spectrum

Neutrinos and Cosmic-Rays		

MicroQuasars - Studied at Observatoire de Strasbourg

- Compact Object (BH or NS) fed by a massive star
- Particles accelerated in jets or in accretion disk
- Nature or primary particles unknown !
- A few of them observed in γ : HESS, MAGIC, VERITAS
- LS5039 : Phasogramm shows orbital motion in flux and spectrum

Neutrinos and Cosmic-Rays		

The Galactic Plane - visible with Antares!

• Lots of New Sources discovered by HESS

Th. Pradier (University of Strasbourg)

ESC 2011 - Neutrino Astrophysics

Neutrinos and Cosmic-Rays		

The Galactic Centre - only visible with Antares

- Sgr A* (radio source) on the position of a SuperMassive Black Home $(M \sim 3 \times 10^6 M_{\odot})$
- Sgr A* emits X-rays HESS J1745-290 very close !
- No coincidence of X-Ray flares and γ -rays observed

Th. Pradier (University of Strasbourg)

ESC 2011 - Neutrino Astrophysics

Neutrinos and Cosmic-Rays		

Dark Sources?

- Several sources observed only in γ , no radio, no X-Rays
- Orphan Flares

・ロト ・回ト ・ヨト ・ヨト

э

High-Energy Neutrinos : Neutrino Telescopes, How they work...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

æ

	Neutrino	o Telescopes	
Detection Principles			

Detection of Cosmic Neutrinos

Idea of Markov (1960)

- We propose getting up an apparatus in an underground lake or deep in the ocean in order to separate charged particle direction by Cherenkov radiations
- Interaction $u_{\mu} + N
 ightarrow \mu + X$ with $R_{\mu} \sim 1 10 km$ in 1 TeV-1 PeV
- Effective volume of detection increases with energy
- Colinearity of μ with ν increases with energy \Rightarrow astronomy

Detection of Cosmic Neutrinos

<ロト <回ト < 三ト < 三ト

э

Detection of Cosmic Neutrinos

イロト イヨト イヨト イヨト

	Neutrin	o Telescopes	
Detection Principles			

	Neutrino Telescopes		
Detection Principles			

An Acoustic pulse

• R&D in Antares (Germany, Marseilles)

2

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶

	Neutrin	o Telescopes	
Detection Principles			

Askaryan Effect - used in Codalema, LOPES...

• Coherence length Δz along Oz axis of shower : fields arrive simultaneously at distance R if $\frac{dR}{dt} = v \cos \theta = \frac{c}{n}$

• But
$$\frac{dR}{dt}$$
 varies : $\frac{dR^2}{dt^2} = v^2 \frac{\sin^2 \theta}{R^2}$

• Coherence implies
$$\Delta R = \frac{1}{2} \frac{v^2 \sin^2 \theta}{R^2} \Delta t^2 < \lambda$$

•
$$\Delta z_{\rm coh} = v \Delta t_{\rm coh} \approx \frac{\sqrt{\lambda F}}{\sin \theta}$$

- \Rightarrow Optical domain : $\Delta z \ll a$, emitting zone around maximum
- \Rightarrow Radio domain : $\Delta z \gg a$

	Neutrino Telescopes		
Detection Principles			

Askaryan Effect - used in Codalema, LOPES... ANITA - GLUE

イロン イ団 とく ヨン イヨン

э

Event Rate & Detector Size

<ロト <回ト < 三ト < 三ト

Event Rate & Detector Size

Event Rate N_{ν} & Luminosity needed

$$N_{
u} \propto \Phi_{
u} imes P_{
m absorption}(heta, E) imes \underbrace{\sigma_{
u}}_{
m cross-section} imes \underbrace{R_{\mu}}_{\mu \
m range} imes \underbrace{A_{\mu}}_{
m Effective \
m Area \ for \ \mu}$$

$$L_{\nu} = 4\pi d^2 \Phi_{\nu} \approx 10^{46} N_{\nu} \left(\frac{d}{4 G \rho c}\right)^2 \left(\frac{E_{\nu}}{100 T eV}\right)^{1-\alpha} \left(\frac{A_{\mu} T}{k m^2 y r}\right)^{-1} _{\rm erg/s}$$

- $lpha \sim 1$ for $E_{
 u} < 100 \, TeV$, $lpha \sim 0.5$ above 100 TeV
- Blazars \sim Gpc, $L \sim 10^{47}$ erg/s \Rightarrow $A_{\mu} \sim 1$ km^2
- Galactic Sources $L_{
 u} \simeq 10^{35}$ erg/s for $A_{\mu} \sim 0.1~km^2$

<ロト <回ト < 回ト < 回ト :

Optical detection of cosmic neutrinos

Th. Pradier (University of Strasbourg)

ESC 2011 - Neutrino Astrophysics

	Neutrino	Telescopes	

Number of detected muons...

For area A and observation time T

•
$$N_{\mu}(\theta) = A.T. \int_{E_{\min}}^{E_{\nu}} \Phi_{\nu}(E_{\nu},\theta) dE_{\nu} P_{\nu \to \mu} P_{\oplus}$$

- $\Phi_{\nu}(E_{\nu}, \theta)$ neutrino spectrum
- $P_{
 u
 ightarrow \mu}$ Probability to produce a detectable muon with $E_{\mu} > E_{\min}$
- P_{\oplus} Earth transparency to HE neutrinos

Producing a detectable muon

- $P_{\nu \to \mu} \propto \int \frac{d\sigma}{dE_l} R_l(E_l, E_{\min}) dE_l$
- R_l range of muon of energy E_l before it reaches E_{\min}
- $\frac{d\sigma}{dE_i}$ differential interaction cross-section...

・ロト ・四ト ・ヨト ・ヨト

Interaction in Rock/Water/Ice

Deep-Inelastic Scattering

•
$$\frac{d\sigma}{dE_l} = \frac{2G_F^2 m_N E_\nu}{\pi} \left(\frac{M_W^2}{Q^2 + M_W^2} \right)^2 \left[xq(x, Q^2) + x\bar{q}(x, Q^2)(1-y)^2 \right]$$

- m_N , M_W , nucleon and boson mass
- Q transfer momentum, $\nu = E_{\nu} E_{l}$ hadronic energy in lab-frame
- $x = \frac{Q^2}{2m_N\nu}$ momentum fraction carried by parton

•
$$y = \frac{\nu}{E_{\nu}}$$

Interaction in Rock/Water/Ice

v_u and anti-v_u CC Cross Sections

Deep-Inelastic Scattering

- $\sigma_{\nu N} \propto E_{\nu}$ below 5 TeV
- $\sigma_{
 u N} \propto E_{
 u}^{0.4}$ above 5 TeV

• Pointing :
$$\sqrt{<\theta_{\mu\nu}^2>} \approx \sqrt{\frac{m_N}{E_{\nu}}} \Rightarrow <\theta> \approx \frac{1.5^{\circ}}{\sqrt{E_{\nu}(TeV)}}$$

• Colinear at high energy !

Th. Pradier (University of Strasbourg)

Interaction in Rock/Water/Ice

Transmission through Earth

	Neutrin	o Telescopes	

Energy Losses

- Ionization and atomic excitation : interactions with electrons in the media (continuous) - minimum at 2MeV/g/cm²
- Radiative discrete and stochastic
 - Bremmsstrahlung : accelerated particle through field of atomic nuclei $\propto 1/m^2$
 - Pair production : $\mu + N \rightarrow e^+e^-$
 - Photonuclear : inelastic interaction of muon with nuclei, produces hadronic shower

・ロト ・四ト ・ヨト ・ヨト

	Neutrin	o Telescopes	
	Muon Propagation		

Energy Losses

Energy Losses and muon range

• $-\frac{dE}{dx} = a(E) + b(E)E$

・ロト ・回 ト ・ヨト ・ヨト

2

	Neutrin	o Telescopes	

Energy Losses

Energy Losses and muon range

- Muon Range $R_{\mu} = \int_{0}^{E} \frac{dx}{dE} dE \approx \int_{0}^{E} \frac{dE}{a+bE} = \frac{1}{b} \log \left(1 + \frac{E}{E_{c}}\right)$ with $E_{c} = a/b$ critical energy
- For upgoing muons, the interaction volume is much larger than instrumented volume !

	Neutrino	o Telescopes	
		Muon Detection	

Cherenkov Effect

Charged Particle with velocity > phase velocity of light

- $v > \frac{c}{n}$ or $\beta > \frac{1}{n}$ refraction index
- Coherent emission along a cone of $heta_{\it C}\sim{
 m constant}$
- $heta_{C} \sim 1^{\circ}$ in air, $heta_{C} \sim 43^{\circ}$ in water, $heta_{C} \sim 41^{\circ}$ in ice

Th. Pradier (University of Strasbourg)

・ロト ・回ト ・ヨト ・ヨト

	Neutring	Telescopes	
		Muon Detection	

Cherenkov Effect

Charged Particle with velocity > phase velocity of light

- $v > \frac{c}{n}$ or $\beta > \frac{1}{n}$ refraction index
- Coherent emission along a cone of $heta_{\mathcal{C}} \sim {
 m constant}$
- $heta_C \sim 1^\circ$ in air, $heta_C \sim 43^\circ$ in water, $heta_C \sim 41^\circ$ in ice

・ロト ・四ト ・ヨト ・ヨト

	Neutrino '	Telescopes	
		Muon Detection	

Cherenkov Effect

Number of Photons

$$\frac{d^2N}{dxd\lambda} = \frac{2\pi\alpha}{\lambda^2} \left(1 - \frac{1}{n^2\beta^2}\right) \approx \frac{2\pi\alpha}{\lambda^2} \sin\theta_C^2$$

- Between 300-600 nm, $\frac{dN}{dx} \approx$ 350 photons/cm
- $\frac{d^2N}{dEdx} \approx 370 \sin^2 \theta_C(E) eV^{-1} cm^{-1} \approx 10^{-4} \times 2MeV/cm$
- But directional effect !

<ロト < 回 ト < 回 ト < 三 ト - 三</p>

	Neutrin	o Telescopes	
		Muon Detection	

Event Topologies

Reconstruction of the track...

Reconstruction of the track...

Importance of scattering

- Few of photons are direct !
- Impact on angular resolution

Atmospheric μ (downward) event

<ロト <回ト < 回ト < 回ト :

э

Atmospheric ν (upward) event

<ロト <回ト < 回ト < 回ト :

2

	Neutrino	o Telescopes		
			Reconstruction and Analysis	

Atmospheric or Cosmic?

Methods to distinguish between Atmospheric and Cosmic Neutrinos...

Look for an excess at high energies... \Rightarrow need good energy resolution

	Neutrin	o Telescopes		
			Reconstruction and Analysis	

Atmospheric or Cosmic?

Methods to distinguish between Atmospheric and Cosmic Neutrinos...

Look for anisotropies/excess around chosen sources \Rightarrow need good angular resolution

Confirmation with other messengers : GRBs, optical follow-up, gravitational waves...

イロト イボト イヨト イヨト

	Neutrino	Telescopes	
			Radiation Media

Different radiators...

Photons are absorbed and scattered

$$I(r) \propto rac{1}{R} e^{-R/\lambda_{
m att}}$$

• Note the 1/R because light on a cone, not on a sphere! (not so easy to demonstrate!)

• Here Attenuation length :
$$\frac{1}{\lambda_{\mathrm{att}}} = \frac{1}{\lambda_{\mathrm{abs}}} + \frac{1}{\lambda_{\mathrm{scatt}}}$$

Medium	Attenuation	Absorption	Scattering	$\Delta \theta$ 10 TeV
Sea water	40-50m	50-60m	>200m	0.2°
Lake Baikal	20m	15-30m	>100m	1.5°
Polar Ice		100m	25m	3°

- \bullet lce : no current, no bioluminescence, no β decay from salt
- Water : less scattering, better angular resolution

High-Energy Neutrinos : Neutrino Telescopes - IceCube and Antares

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

æ
Neutrino Telescopes

IceCube and Antares

Surprises !

Multi-Messenger Approaches

Neutrino Telescopes in the World...

 Introduction
 Neutrinos and Cosmic-Rays
 Neutrino Telescopes
 IceCube and Antares
 Surprises !

 Structures
 Selected Results
 Multi-Messenger Approaches

Neutrino Telescopes in the World...

Different Telescopes are complementary

- 0.5π sr instantaneous overlap
- 1.5π sr integrated overlap

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

	IceCube and Antares	

IceCube

		IceCube and Antares	

IceCube

Th. Pradier (University of Strasbourg)

ESC 2011 - Neutrino Astrophysics

	IceCube and Antares	

э

	IceCube and Antares	

	IceCube and Antares	

	IceCube and Antares	

		IceCube and Antares	
Selected Results			

Some "Calibration" Results...

イロト イロト イヨト イヨト

		IceCube and Antares	
	elected Results		

Some "Calibration" Results...

イロト イヨト イヨト イヨト

		IceCube and Antares	
Selected Results			

Diffuse Fluxes

Th. Pradier (University of Strasbourg)

		IceCube and Antares	
	Selected Results		

Diffuse Fluxes

Antares 2007+2008 preliminary

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

		IceCube and Antares	
	elected Results		

Diffuse Fluxes

2

37 / 49

		IceCube and Antares	
Selected Results			

Extremely-High Energies

・ロト ・四ト ・ヨト ・ヨト

크

			IceCube and Antares	
		elected Results		
A • .	·			

Anisotropies?

		IceCube and Antares	
	elected Results		

Gamma-Ray Bursts and Supernova SN2008D

イロト イヨト イヨト イヨト

Flare of the Crab Nebula in September 2010

<ロト <回ト < 三ト < 三ト

		IceCube and Antares	
Se	elected Results		

Flare of the Crab Nebula in September 2010

41 / 49

Time-(In)Dependent Point Source Searches

• Selection of sources and time-periods

イロト イヨト イヨト イヨト

Time-(In)Dependent Point Source Searches

• Time integrated search

< □ > < □ > < □ > < □ > < □ >

	IceCube and Antares	
	Multi-Messeng	er Approaches

Correlations with other messengers...

イロト イヨト イヨト イヨト

э

High-Energy Neutrinos : Perspectives...

◆□▶ ◆□▶ ◆三▶ ◆三▶

- E

Introduction Neutrinos and Cosmic-Rays			Surprises !
Cosmological			

Relic ν and UHE ν

•
$$E_{\nu_i}^{\text{résonance}} = \frac{m_Z^2}{2m_{\nu_i}} \simeq 4 \times 10^{21} \left(\frac{1 \text{ eV}}{m_{\nu_i}}\right) \text{ eV}$$

ヘロト ヘロト ヘヨト ヘヨト

		Surprises !
Cosmological Neutri		

Relic ν and UHE ν

Interaction of ν UHE with Relic ν from Big-Bang

Dip in Neutrino Spectrum...

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶

 Introduction
 Neutrinos and Cosmic-Rays
 Neutrino Telescopes
 IceCube and Antares
 Surprises!

 Cosmological Neutrinos
 Neutrino Masses
 Conclusions

An example of GW- ν Coincidences : Type II SN

Type II SN

- $m_{\nu} \neq 0$: $\delta t_{\text{propagation}} \simeq 5.15 ms \left(\frac{L}{10 k \rho c}\right) \left(\frac{m_{\nu} c^2}{1 eV}\right)^2 \left(\frac{10 MeV}{E_{\nu}}\right)^2$
- $E_{\nu}^{SN} \sim MeV$, $\delta t_{GW-\nu_e^{flash}} \lesssim 0.5 ms$ \Rightarrow Limits on ν absolute mass scale from $\Delta t_{GW-\nu}$

N. Arnaud,..., Th. P. - Phys.Rev. D65 (2002) 033010

Introduction

Neutrino Telescopes

IceCube and Antares

Surprises !

Cosmological Neutrinos

Neutrino Masses

Conclusio

An example of GW- ν Coincidences : Type II SN

Collapse of NS into BH induced by accretion

- \Rightarrow Sudden stop of neutrino signal
- \Rightarrow Strong GW Signal
 - \Rightarrow Limits on ν absolute mass scale from $\Delta t_{GW-\nu}$

J. F. Beacom et al. - Phys.Rev. D63 (2001) 073011

Th. Pradier (University of Strasbourg)

ESC 2011 - Neutrino Astrophysics

Introduction

Neutrino Telescopes

IceCube and Antares

Surprises !

ological Neutrinos

Fundamental Physics at High Energy

• Quantum Gravity :
$$c^2 p^2 = E^2 \left[1 + \xi \left(\frac{E}{E_{QG}} \right) + \mathcal{O} \left(\frac{E^2}{E_{QG}^2} \right) + \dots \right]$$

 $\Rightarrow |\Delta t_{QG}| \simeq 0.15 ms \left(\frac{d}{10 \ kpc} \right) \left(\frac{E^{HE}}{1 \ TeV} \right) \left(\frac{10^{19} \ GeV}{E_{QG}} \right) \text{ for } z \ll 1$

Th. Pradier (University of Strasbourg)

ESC 2011 - Neutrino Astrophysics

		Surprises !
		Conclusions

Expect the Unexpected...

Some surprises perhaps...? HESS J1057+006 HESS J1040-010 HESS J1040-029 HESS J1912+101 The Fermi LAT 1FGL Source Catalog HE55 J164 HE88 J1747-201 011-055 HESS J1034-007 HESS J1025-137 HESS J1013-178 HESS J1004-216 HESS /1001-200 18 J1 442-42 AGN SNR AGN-Blazar HEBS J1202-HESS J 1023-575 AGN-Non Blaza DSD w/DWN Starburst Galaxy No Association Globular Cluster Possible Association with SNR and PWN Galaxy HXB or MOC Possible confusion with Galactic diffuse emission - HESS J1356-645 • New instruments bring new sources ! • Neutrino Astronomy $\approx \gamma - ray$ astronomy 20...or 30? years ago!

イロト 不得 トイヨト イヨト

		Surprises !

Expect the Unexpected...

Some surprises perhaps...?

Instrument	User	Date	Intended Use	Actual Use
Optical	Galileo	1608	Navigation	Moons of Jupiter
Optical	Hubble	1929	Nebulae	Expanding
				Universe
Radio	Jansky	1932	Noise	Radio
				Galaxies
MW	Penzias, Wilson	1965	Radio-Galaxies	3K CMB
X-Ray	Giacconi	1965	Sun, Moon	Neutron Stars
				Binaries
Radio	Hewish, Bell	1967	lonosphere	Pulsars
$\gamma ext{-rays}$	Military	1960	Nuclear Tests	GRBs
ν	Davis, Koshiba	'50-'00	Sun	ν Oscillations
				SN1987A

イロト イヨト イヨト イヨト