Particle Acceleration, Shocks, Reconnection...

John Kirk

Max-Planck-Institut für Kernphysik Heidelberg, Germany

Blazar Variability, École Polytechnique, 24th April 2008

・ロト・日本・日本・日本・日本・日本

Conclusions

Particle spectrum at relativistic shocks

1st order Fermi process at shocks

The simplest kinematic picture:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへで

1st order Fermi process at shocks

The simplest kinematic picture:

• Hybrid picture: ideal MHD fluid + energetic particles

(日)

1st order Fermi process at shocks

The simplest kinematic picture:

- Hybrid picture: ideal MHD fluid + energetic particles
- Particle transport: random (small-angle) deflections by scatterers anchored in the fluid

(日)

1st order Fermi process at shocks

The simplest kinematic picture:

- Hybrid picture: ideal MHD fluid + energetic particles
- Particle transport: random (small-angle) deflections by scatterers anchored in the fluid
- No important length/energy scales (thin shock/precursor, power-law turbulence)

1st order Fermi process at shocks

The simplest kinematic picture:

- Hybrid picture: ideal MHD fluid + energetic particles
- Particle transport: random (small-angle) deflections by scatterers anchored in the fluid
- No important length/energy scales (thin shock/precursor, power-law turbulence)
- Competition between
 - energy boost on bouncing off upstream plasma
 - escape downstream

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

1st order Fermi process at shocks

The simplest kinematic picture:

- Hybrid picture: ideal MHD fluid + energetic particles
- Particle transport: random (small-angle) deflections by scatterers anchored in the fluid
- No important length/energy scales (thin shock/precursor, power-law turbulence)
- Competition between
 - energy boost on bouncing off upstream plasma
 - escape downstream

$$\Rightarrow \qquad \frac{\mathrm{d}N}{\mathrm{d}\gamma} \quad \propto \quad \gamma^{2-s}$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Prediction of index s

For relativistic shocks, three possibilities:

(日)

Prediction of index s

For relativistic shocks, three possibilities:

- Solve transport equation Kirk et al (2000)
 - Directional dependence of angular diffusion *and* zeroth-order propagator in distance *z* from shock front
 - For parallel shock, and for weak magnetization, free-particle propagator ($\mu = \hat{\vec{v}} \cdot \hat{\vec{z}}$):

$$(u+\mu)\frac{\partial f}{\partial z} = \frac{\partial}{\partial \mu}D_{\mu\mu}\frac{\partial f}{\partial \mu}$$

Prediction of index s

For relativistic shocks, three possibilities:

- Solve transport equation Kirk et al (2000)
 - Directional dependence of angular diffusion and zeroth-order propagator in distance z from shock front
 - For parallel shock, and for weak magnetization, free-particle propagator ($\mu = \hat{\vec{v}} \cdot \hat{\vec{z}}$):

$$(u+\mu)\frac{\partial f}{\partial z} = \frac{\partial}{\partial \mu}D_{\mu\mu}\frac{\partial f}{\partial \mu}$$

 Prescribe a scattering law and propagator and apply Monte-Carlo Bednarz & Ostrowski (1998); Achterberg et al (2001); Baring & Stecker (2007)

Prediction of index s

For relativistic shocks, three possibilities:

- Solve transport equation Kirk et al (2000)
 - Directional dependence of angular diffusion and zeroth-order propagator in distance z from shock front
 - For parallel shock, and for weak magnetization, free-particle propagator ($\mu = \hat{\vec{v}} \cdot \hat{\vec{z}}$):

$$(u+\mu)\frac{\partial f}{\partial z} = \frac{\partial}{\partial \mu}D_{\mu\mu}\frac{\partial f}{\partial \mu}$$

- Prescribe a scattering law and propagator and apply Monte-Carlo Bednarz & Ostrowski (1998); Achterberg et al (2001); Baring & Stecker (2007)
- Prescribe a "realistic" turbulent magnetic field and apply Monte-Carlo Niemic, Ostrowski & Pohl (2006)

A perception of reality

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣�?

A perception of reality

2D P.I.C. simulations Spitkovsky arXiv:0802.3216

- Unmagnetized e⁺e⁻ plasma
- Bulk $\Gamma \approx 30$
- Field generated by Weibel instability

(日)

A perception of reality

2D P.I.C. simulations Spitkovsky arXiv:0802.3216

- Unmagnetized e⁺e⁻ plasma
- Bulk $\Gamma \approx 30$
- Field generated by Weibel instability
- Ab initio demonstration of 1st order Fermi process at a shock front?

1% of particles in power-law tail

・ロット (雪) (日) (日)

-

• Cut off at $\sim 100 \times$ peak, growing in time

•
$$s = 4.4 \pm 0.1$$

(日)

Analytic approximations

- Transport described by an angular diffusion coefficient $D_{\mu\mu}$
- Expansion in eigenfunctions Q_J of

$$\left[rac{\mathrm{d}}{\mathrm{d}\mu} D_{\mu\mu} rac{\mathrm{d}}{\mathrm{d}\mu} - \Lambda_J(u+\mu)
ight] \mathsf{Q}_J = \mathsf{0}$$

converges rapidly if upstream eigenfunctions used to represent *f*.

 Numerical evaluation straightforward

Analytic approximations

- Transport described by an angular diffusion coefficient $D_{\mu\mu}$
- Expansion in eigenfunctions Q_J of

$$\left[rac{\mathrm{d}}{\mathrm{d}\mu} \mathcal{D}_{\mu\mu} rac{\mathrm{d}}{\mathrm{d}\mu} - \Lambda_J(u+\mu)
ight] \mathsf{Q}_J \hspace{0.1 in} = \hspace{0.1 in} \mathsf{0}$$

converges rapidly if upstream eigenfunctions used to represent *f*.

- Numerical evaluation straightforward
- Variational principle
 - → ground state eigenfunction
 - \rightarrow analytic approximation for s

Dempsey & Kirk (2008)

ヘロア 人間ア 人間ア 人間ア

€ 990

Hysteresis

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Hysteresis

Cooled particles: soft lag

Hysteresis

Cooled particles: soft lag Duration = 10Intensity ^{g g} $\eta_{\rm f} = 1$ ν_1/ν_{\max} =0.01 $\nu_{2}/\nu_{max} = 0.05$ 0 10 20 30 40 -0.85 -0.85 -0.9 -0.9 ರ^{-0.95} ರ ^{-0.95} -1 -1 ← -1.05 -1.05 Intensity 0 10 20 30 40 50 70

Accelerating particles: hard lag

(日)

Broad-band emission

Relativistic shock front:

- Energy per particle upstream $\Gamma m_{\rm p}c^2/2$
- Downstream $\epsilon_B \sim 1\%$ into magnetic field
- Temperature $T \approx \Gamma m_{\rm p} c^2/2k_{\rm B}$
- "Thermal" electron distribution

$$\frac{\mathrm{d}N}{\mathrm{d}\gamma} \propto \gamma^2 \exp\left(-\gamma m_{\rm e} c^2/k_{\rm B} T\right)$$

Accelerated electrons

$$rac{\mathrm{d}N}{\mathrm{d}\gamma} ~\propto~ \gamma^{-2.2} ~\mathrm{for}~\gamma \gg k_{\mathrm{B}}T/m_{\mathrm{e}}c^{2}$$

- At low freq. emissivity dominated by electrons with $\gamma = \Gamma m_{\rm p}/2m_{\rm e}$
- equivalent to monoenergetic distribution

(日)

 At high freq. α = 1.1 (cooled distribution)

Double power-law injection

Low energy $\mathbf{Q} \propto \gamma^{\mathbf{p}_1}$ High energy $\mathbf{Q} \propto \gamma^{\mathbf{p}_2}$

Black: injected distribution

Blue: Particles at γ_{peak} have time to cool within source

Red: Particles at γ_{peak} *do not* have time to cool within source

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

э

Double power-law injection

Low energy $Q \propto \gamma^{p_1}$ High energy $Q \propto \gamma^{p_2}$

Black: injected distribution

Blue: Particles at γ_{peak} have time to cool within source

Red: Particles at γ_{peak} *do not* have time to cool within source

Maxwellian: $p_1 = 2$ Shock acceleration: $p_2 = -2.2$

・ロト・日本・日本・日本・日本

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Observed brightness temperature

Standard theory, weak absorption

$$T_{\rm B} = 1.2 \times 10^{14} \left(\frac{\mathcal{D}_{10}^6 \xi}{(1+z)^6} \right)^{1/5} \left(\frac{1-e^{-\tau_{\rm s}}}{\tau_{\rm s}^{1/5}} \right) \nu_{\rm max14}^{2/15} \nu_{\rm GHz}^{-1/3} \, {\rm K}$$

(日) (日) (日) (日) (日) (日) (日) (日)

Observed brightness temperature

Standard theory, weak absorption

$$T_{\rm B} = 1.2 \times 10^{14} \left(\frac{\mathcal{D}_{10}^6 \xi}{(1+z)^6} \right)^{1/5} \left(\frac{1-{\rm e}^{-\tau_{\rm s}}}{\tau_{\rm s}^{1/5}} \right) \nu_{\rm max14}^{2/15} \nu_{\rm GHz}^{-1/3} \, {\rm K}$$

- $\tau_{\rm s}$: optical depth to synchrotron self-absorption at $\nu_{\rm GHz}$
- ν_{max14}: characteristic frequency of synchrotron radiation in units of 10¹⁴ Hz (flat spectrum up to this frequency)
- ξ : "catastrophe" parameter ($\approx \gamma^2 \tau_{\rm T}$) \lesssim 1

Observed brightness temperature

Standard theory, weak absorption

$$T_{\rm B} = 1.2 \times 10^{14} \left(\frac{\mathcal{D}_{10}^6 \xi}{(1+z)^6} \right)^{1/5} \left(\frac{1-{\rm e}^{-\tau_{\rm s}}}{\tau_{\rm s}^{1/5}} \right) \nu_{\rm max14}^{2/15} \nu_{\rm GHz}^{-1/3} \, {\rm K}$$

- $\tau_{\rm s}$: optical depth to synchrotron self-absorption at $\nu_{\rm GHz}$
- ν_{max14}: characteristic frequency of synchrotron radiation in units of 10¹⁴ Hz (flat spectrum up to this frequency)
- ξ : "catastrophe" parameter ($\approx \gamma^2 \tau_{\rm T}$) \lesssim 1

Intrinsic degree of circular polarisation

$$r_{\rm c} = 0.019 \times \left(\frac{(1+z)\tau_{\rm s}}{\mathcal{D}_{10}\xi}\right)^{1/5} \nu_{\rm max14}^{1/5} \cot\theta$$

・ロト・雪・・ヨト・ヨト・ 日・ つへぐ

SSC model for S5 0716 +71

Tsang & Kirk (2007); data from Ostorero et al (2006)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → ���

SSC model for S5 0716 +71

Tsang & Kirk (2007); data from Ostorero et al (2006)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

SSC model for S5 0716 +71

Tsang & Kirk (2007); data from Ostorero et al (2006)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Collimation or dissipation?

For relativistic, radial flow

σ	=	magnetic enthalpy density
		particle enthalpy density
	=	constant

(日)

Collimation or dissipation?

For relativistic, radial flow

 $\sigma = \frac{\text{magnetic enthalpy density}}{\text{particle enthalpy density}}$ $= \frac{\text{constant}}{\text{constant}}$

Nonradial flow: acceleration of jet possible

(日)

Collimation or dissipation?

For relativistic, radial flow

 $\sigma = \frac{\text{magnetic enthalpy density}}{\text{particle enthalpy density}}$ $= \frac{\text{constant}}{\text{constant}}$

- Nonradial flow: acceleration of jet possible
- Changing magnetic polarity: dissipation possible

Sheet geometry

Oblique, split-monopole solution Bogovalov 1999

Meridional plane

Equatorial plane

Properties

- Thermal pressure balances magnetic pressure
- + and charges counterstream (drift) in sheet

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶

Properties

- Thermal pressure balances magnetic pressure
- + and charges counterstream (drift) in sheet
- Exact stationary solutions in ideal MHD/Vlasov plasma
- Solutions unstable (tearing, kink...)

(日)

What controls the dissipation rate?

Properties

- Thermal pressure balances magnetic pressure
- + and charges counterstream (drift) in sheet
- Exact stationary solutions in ideal MHD/Vlasov plasma
- Solutions unstable (tearing, kink...)

・ロット (雪) (日) (日)

- Wave amplitude: $B \propto 1/r$
- $j \propto \nabla \wedge B$ implies $j \propto 1/r$
- Continuity equation: $n \propto 1/r^2$

- Wave amplitude: $B \propto 1/r$
- $j \propto \nabla \wedge B$ implies $j \propto 1/r$
- Continuity equation: $n \propto 1/r^2$
- \Rightarrow drift speed in sheet $v_{\text{drift}} \propto r$
- When $v_{\text{drift}} = c$ current is starved of charge carriers Usov 1975

- Wave amplitude: $B \propto 1/r$
- $j \propto \nabla \wedge B$ implies $j \propto 1/r$
- Continuity equation: $n \propto 1/r^2$
- \Rightarrow drift speed in sheet $v_{\text{drift}} \propto r$
- When $v_{drift} = c$ current is starved of charge carriers Usov 1975
- Sheet eats into magnetic field ⇒ minimum (gradual) dissipation rate

Radial flow, constant speed

- Wave amplitude: $B \propto 1/r$
- $j \propto \nabla \wedge B$ implies $j \propto 1/r$
- Continuity equation: $n \propto 1/r^2$
- \Rightarrow drift speed in sheet $v_{\text{drift}} \propto r$
- When $v_{drift} = c$ current is starved of charge carriers Usov 1975
- Sheet eats into magnetic field ⇒ minimum (gradual) dissipation rate
- Gradual, complete dissipation impossible if too few particles available: Γ < 3× multiplicity

Lyubarsky & Kirk 2001

Slow dissipation

Relativistic tearing mode

- Magnetic energy \Rightarrow heat
- Hot plasma expands
- Flow accelerates
- Timescale dilates

 $\Gamma \propto r^{5/12}$ $\frac{r_{\text{max}}}{r_{\text{L}}} = \Gamma_{\text{max}}^{4/5} \hat{L}^{3/10}$

$$\hat{L} = L\left(\frac{\pi^2 e^2}{m^2 c^5}\right)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $= 1.5 \times 10^{22}$ (for Crab)

Kirk & Skjæraasen 2003

Conclusions

- 1st order Fermi process at relativistic shocks alive and well. Asymptotic spectral index $s \approx 4.3$ (d ln $N/d \ln \gamma = -2.3$) Not unrealistic - FR I radio galaxies Laing et al 2008 arXiv:0801.0154
- Models with predictive power: hard and soft lags expected. Radiation mechanism uncertain but testable. High brightness temperature and intrinsic circular polarisation possible.
- Problems e.g., very high Doppler factors, hard spectra, suggest alternatives: shear acceleration, second order acceleration...
- Highly magnetized flows: first order Fermi process killed.
 Dissipative current sheets attractive, but predictive power of current models limited.