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PLAN:

e Classical non-thermal pair models.
Pair cascades.

e Cascades in AGN jets.

e Modern reincarnations. Self-supporting
cascades: photon breeding mechanism.

e Comparison to observations.




‘ Non-thermal pair models

1. No cascade (e.g. synchrotron self-
Compton models).

2. Linear electromagnetic cascade (radiation
fleld acting on a cascade Is determined
by the external conditions, e.g. accretion
disk, BLR).

3. Non-linear cascade (the radiation field is
determined by the cascade itself).

Bonometto, Rees 1971; Guilbert, Fabian, Rees 1983; Kazanas 1984; Aharonian,
Vardanian 1985; Zdziarski & Lightman 1985; Stern 1985; Zdziarski 1986;
Zdziarski & Lamb 1986; Fabian et al. 1986; Lightman & Zdziarski 1987; Svensson
1987; Ghisellini 1987; Zdziarski 1988; Done & Fabian 1989; Coppi 1992;

review Svensson 1994



Sy Parameters

O U
Injected compactness (thermal + nonthermal) :

by =Ly + Ly
Ratio of injection rates (particles/soft photons): [, /1
Soft photon energy: ¢ or kT,

Lorentz factor of injected electrons: y_
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Cooling time r o=t R1IO__R _ escape

(e.g. by Compton) y ¢yl ¢
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o

o Electron kinetic equation

o Steady-state
e [For monoenergetic
or hard injection,
electron spectrum

e [For soft injection

e Photon spectrum

Electron and photon spectra
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Generation

Injected pairs

. =I

inj,n ph,n-1
Steady - state pairs

p,=1,.  +1

inj,n
Photon distribution
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The photons from the first generation produce an electron-
positron pair. Each high-energy photon of energy € >> 1
finds a partner g'=1/¢

. Lore_nt_z factor of produced pair y 4y, mE=Yy =y, ~ %
* The Injected spectrum of the next generation pairs = photon
spectrum

<1 % % 15/8 2-%n-1
2 % /W) 2% 3 Ym
oo %% e 2- Y



Absorbed by
photon-photon

pair-production

o

=

= —2I'+1

3 n,(g) e

=

'_Q_.D -

t r
\\3— 0 = 7 ol P -
Compton AN =100 Annihilation
up- Or 1 - V — Ilne
o _

l 1 l ] I 1 1 l

down-scattering | , 7 /
e %

!
-4-3-2-10 1 2 3 4 5 6 7
lg(e) [keV]

ny(e)xe’, T =18, a,l(e zﬁ[lnx(l/g)]= O
5 |e S5m,c
n, () o emissivity in y -rays _ gr‘_l oo g2

opacity by X -rays £

—F,(1/e)xe ™



Optical depth for pair production on radiation from

1. dust (black body T=1000 K)

2. multicolor disk (T

Flux
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OLRp | Optical depth for pair production

%‘3 Pair production in AGN F

_ op Irp_ Ly O, [
on disk photons TUUN0 T 4aRcegm,c?] 10 40me,
- - - 1/4
Typical accretion disk photon energy —, _ o+, 1/4( )

Typical pair production optical depth for
photons of energy ~10/es at a distance _ _10'R ( ) M

R

y-sphere for photons ¢ ~10/ec~10° (i.e. =

1TeV)is at I

7
r, =1=R ~10 RS(

3/4 I3 3/4
) M§/4=100pc( ) M

LEdd L Edd

Of course, at 100 pc disk radiation is
beamed and does not interact with the jet
radiation.

An lower y-ray energies, interaction with
_ 1 g
the X-rays F(g)oc £ gives R, ~1pc nyLy ., (E/1 GeV)




Pair cascades in AGN

e
Y« Bednarek 1997: Z | eesaves ]
Synchrotron cascades ° ot P i
by extremely high- EE
energy gamma-rays. S el ;
e Bednarek & Protheroe = 7
1997: cascade from 2°f ]
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radio jet

e Electrons are accelerated over the
length of the jet.

e X-ray photons provide opacity for
photon-photon pair production.
e yv-sphere grows with photon energy.

: e Higher energy y-rays escape from
o larger distances and are less variable.

Log (E.M6Y) e Produces too many X-rays?

Blandford & Levinson 1995
Levinson & Blandford 1995



%“3 Self-supporting cascades g

e All models assume ad hoc particle
Injection/acceleration.

e Too many parameters make prediction
almost impossible.

e Most of the models consider no feedback
from the external environment (except of
the injection of external soft photons).

e The interaction between the jet and the
external medium might be important and
can produce strongly non-linear effects.



3. Compton scattering
-

2. Pair
production

[ AR I
1. Seetl high-energy photon . F)air4 g . Compton
proauction scattering

The mechanism is supercritical if the total
amplification factor through all the steps is larger

than unity:
-C,C,C,.C,C. >1

where C_denote the energy transmission coefficient
for a given step.




2. Pair

production :
/ 2 '
1. Seed high-energy photon i 5. Compton
4. Pair S :
scattering

production

Requirements

1.
2.

3.

Some seed high-energy photons

Transversal or chaotic B-field

Isotropic radiation field (broad emission line region at
1017 cm)

Jet Lorentz factor I'=4

(more realistically I'=10).



High-energy photons are P
converted to electron- o
positron pairs because the :

optical depth is large

T, (¢)=n,0, RO, = _
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Pairs in the jet are produced with Y =€l

Y min® 10 -mirrors the disk spectrum- V. ® 10° -depends on the
magnetic field and the soft photon field.
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Gamma-ray emission sites

Photon breeding needs soft (isotropic) photon
background.

Near the accretion disk (if the jet is already
accelerated with '=10)

Broad emission line region at 101/ cm.
Dusty torus at parsec scale (if still '=10).
Stellar radiation at kpc scale (if ['=10).

Cosmic microwave background at 100 kpc scale (if
'=10).



Origin of seed high-energy photons

O_

e Particle acceleration
IN shocks, shear
layers? ~

e Secondary particles £
from cosmic ray 3
Interaction?

e Gamma-ray _
background? po b

0 100 200 300
Time (in units R,/c)
Let us start from the extragalactic gamma -ray
background observed at Earth. Photon breeding
Increases energy density of high-energy photons by
20 orders of magnitude Iin 3 years.

—10

—-15




Electron dlstrlbutlon (|n the Jet)
L. Ldlsk—lO“Gerg/s |

jet™
=S _] 11

L =L

jet™

y sk = 10%%erg/s
0 2 4 6 8
log ¥
Photon breeding: electrons are “injected” at y>10°

Observations: the electron “injection” peaks between

Ymin—=104-10° and v,,,.,=10°-10" in low-luminosity objects
(Ghisellini et al. 2002, Krawczynski et al. 2002, Konopelko et al.
2003, Giebels et al. 2007).



Blazar sequence —

Observed Modeled

Fossati et al. 1998

10 15 20 25
Log v [Hz] log (E/m c?)

Low-energy component in high-luminosity sources
might be produced at larger distances.




%"5' Decelerating & structured jet

o [

1. Photon breeding provides friction
between the jet and the external medium.
2. Produces a decelerating and “structured” jet.




. Terminal Lorentz

Cylindrical
radius

0.4 0.6
r

0.8

factor iIs smaller for
larger initial T,

. High radiative

efficiency 10-80%.

. Gradient of I" implies

broad emission pattern.

. Predicts high gamma-

luminosity in radio
galaxies (e.g. M87).

. Solves the Doppler

factor-crisis.
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;i Temporal variability '
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The system IS
super-critical.

Shows chaotic
behaviour.

Flux doubling at
time-scales
< Rj/ch.



' 3 Conclusions !
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Copious production of pairs seem to be
unavoidable In relativistic jets

Photon breeding

. Is based on well-known physics
. IS the self-consistent mechanism for acceleration of

high-energy electrons (pairs)

. has high radiative efficiency

shows fast variability and chaotic behaviour

. produces decelerating, structured jet with a broad

emission pattern. Predicts strong GeV-TeV emission
for off-axis objects (radio galaxies)

. Is very promising in explaining high luminosities of

relativistic jets in quasars



y - Lorentz factor Cross-section for pair production

& v Op
O/ o —Thomson

O N cross-section
//},0 e
Z 'l

e=hv/m_c2 photon energy . €8,
In units of electron rest-mass 1 3

PAIR PRODUCTION in a power-law radiation field
A n(S) \ Photons at ¢, interact mainly with target

WS just above threshold at ¢, = 2/¢,
Opt/UV/ %

y-rays Produced pairs

f Energy conservation y* + y~ =g,+¢&, =€,
e,~3/e;, 1 €1 AS YT =y =yt =7 =€,/2
Each particle has approximately half of

the hard photon energy.

X-rays
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Luminosity dL/dcos6

Angular distribution of radiation

from the decelerating structured jet

0.1 E

0.01

External _

10-2 ¢
104 ¢
10-5 ¢

10-6 |

-7

medium °

=

Gamma-ray radiation is coming

from the fast spine.

Optical is synchrotron from the

slow sheath.

X-rays are the mixture.

Gamma-ray at large angles by pairs

In external medium have luminosity

[';* smaller than that at angle 1/T'; (I

i# -amplification, I';* - beaming).

Compare to 6° ratio for 6= 1/I'; and
6=1 which is I'}°

Photon breeding predicts high

gamma-luminosity in radio galaxies

(e.g. M87).

Solves the delta-crisis.



Fermi | acceleration

N relat|V|st|c shocks

Relativistic shock with
Lorentz factor I 0

Particles crossing the N\
shock can, in principle,

gain I'?in energy for

every cycle.

However, since shock iIs
relativistic, for already a

very small deflection 0
angle 6~1/T", the shock

catches up the particle. a

Thus, the gain is only shock
factor of 2.

Injection problem

I
shear flow

b



e Instead of charged
particles, energy Iis
transported through the
shock by neutral particles,
e.g. photons.

e A hard photon is born
downstream (1). Then it is
converted in the upstream
region to an e*~ pair (2) (by
vy Interaction with a soft
photon).

e Pair turns around (3) and is
advected back to the
downstream flow where it
Comptonizes a soft photon
and produces another hard
photon (1), thus closing the
cycle.

a 116’

shock shear

Discovered independently by Boris E. Stern (astro-ph/0301384), MNRAS, 345, 590 (2003)
and Derishev E. et al. (astro-ph/0301263), Phys. Rev. D 68, 043003 (2003)

ﬁ@z |

- b

flow




Blazar
SED
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Fossati et al. 1998
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