

Pair cascades in AGNs

Juri Poutanen University of Oulu, Finland

PLAN:

- Classical non-thermal pair models. Pair cascades.
- Cascades in AGN jets.
- Modern reincarnations. Self-supporting cascades: photon breeding mechanism.
- Comparison to observations.

Non-thermal pair models

- 1. No cascade (e.g. synchrotron self-Compton models).
- 2. Linear electromagnetic cascade (radiation field acting on a cascade is determined by the external conditions, e.g. accretion disk, BLR).
- 3. Non-linear cascade (the radiation field is determined by the cascade itself).

Bonometto, Rees 1971; Guilbert, Fabian, Rees 1983; Kazanas 1984; Aharonian, Vardanian 1985; Zdziarski & Lightman 1985; Stern 1985; Zdziarski 1986; Zdziarski & Lamb 1986; Fabian et al. 1986; Lightman & Zdziarski 1987; Svensson 1987; Ghisellini 1987; Zdziarski 1988; Done & Fabian 1989; Coppi 1992; review Svensson 1994

Parameters

Injected compactness (thermal +nonthermal) : $l_{h} = l_{th} + l_{nth}$ Ratio of injection rates (particles/soft photons): l_h/l_s Soft photon energy : $\varepsilon_{\text{\tiny S}}$ or $kT_{\text{\tiny S}}$ Lorentz factor of injected electrons: γ_{max} $l = \frac{L}{l}$ *R* $\boldsymbol{\sigma_{T}}$ $m_{_e}c$ $\frac{1}{3}$ = 2π 3 $m_{\stackrel{\ }{p}}$ $m_{_e}\,$ *L* L_{Edd} $3R_{_S}$ Compactness $l = \frac{1}{R} \frac{1}{m_c c^3} = \frac{P}{3} \frac{P}{m_c} \frac{1}{L_{Edd}}$ Cooling time (e.g. by Compton) $t_{cool} = \frac{\gamma}{\gamma}$ $\dot{\gamma}$ = *R c* 10 γl $\mathord{<}$ *R c* $=$ escape

Electron and photon spectra

- •Electron kinetic equation
- \bullet Steady-state
- For monoenergetic or hard injection, electron spectrum
- For soft injection
- •Photon spectrum

$$
\frac{\partial N(\gamma)}{\partial t} + \frac{\partial}{\partial \gamma} \left[\dot{\gamma} N(\gamma) \right] = Q(\gamma)
$$

$$
\frac{\partial}{\partial t} = 0 \implies N(\gamma) = \frac{1}{-\dot{\gamma}} \int_{\gamma}^{\infty} Q(\gamma) \, d\gamma
$$

$$
Q(\gamma) \propto \delta(\gamma - \gamma_{\text{max}})
$$
 or $Q(\gamma) \propto \gamma^{-\Gamma_{\text{inj}}}$, $\Gamma_{\text{inj}} < 1$
 $N(\gamma) \propto \frac{1}{\dot{\gamma}} \propto \gamma^{-2}$ at $\gamma < \gamma_{\text{max}}$

$$
Q(\gamma) \propto \gamma^{-\Gamma_{inj}}
$$
, $\Gamma_{inj} > 1$
 $N(\gamma) \propto \gamma^{-p}$, $p = \Gamma_{inj} + 1$

$$
N_{ph}(\varepsilon) \propto \varepsilon^{-\Gamma} , \quad \Gamma = \frac{p+1}{2} = \begin{cases} \frac{3}{2} & , \Gamma_{inj} < 1 \\ 1 + \frac{\Gamma_{inj}}{2} & , \Gamma_{inj} > 1 \end{cases}
$$

Pair cascade spectra

 $\thickapprox \gamma_{_+}$

 \thickapprox \mathcal{E}_{j}

2

- • The photons from the first generation produce an electronpositron pair. Each high-energy photon of energy $\varepsilon >> 1$ finds a partner $\varepsilon' \geq 1/\varepsilon$
- Lorentz factor of produced pair • Lorentz factor of produced pair
- \bullet • The injected spectrum of the next generation pairs = photon spectrum γ_{-} + γ_{+} $\approx\varepsilon\Longrightarrow\gamma_{\scriptscriptstyle{-}}$

Pair production in AGN

- Optical depth for pair production on radiation from
- 1. dust (black body *T*=1000 K)

•

- 2. multicolor disk (T_{max} =10⁵K)
- 3. X-rays (power-law with $\Gamma = 2$)

Pair production in AGN

- •**U** Optical depth for pair production on disk photons •**Typical accretion disk photon energy** • Typical pair production optical depth for photons of energy \approx 10/ $\epsilon_{\rm S}^-$ at a distance *R* $\varepsilon_{\rm s} \approx 10^{-5} M_8^{-1/4} \left(\frac{L}{I} \right)$ $\bm{\tau}_{\gamma\gamma}$ \approx $10^7 R_{\rm s}$ $\tau_{\gamma\gamma} \approx n_{ph}$ $\sigma_{_{T}}$ 10 *R* = *L S* $4\pi R^2c\Big[\varepsilon_{\rm S}m_ec^2\Big]$
	- γ-sphere for photons ε ${\approx}10$ /ε $_{\rm S}{\approx}10^6$ (i.e. ${\approx}$ 1 TeV) is at $\bm{\tau}_{\gamma\gamma}$ = 7 *L* $\sqrt{}$ 3/4 1/4

$$
=1 \Rightarrow R_{\gamma} \approx 10^{7} R_{\rm s} \left(\frac{L}{L_{\rm Edd}}\right)^{3/4} M_{\rm s}^{1/4} = 100 \, \text{pc} \left(\frac{L}{L_{\rm Edd}}\right)^{3/4} M_{\rm s}^{5/4}
$$

 Of course, at 100 pc disk radiation is beamed and does not interact with the jet radiation.

•

•

•

• An lower γ -ray energies, interaction with the X-rays $F(\varepsilon) \propto \varepsilon^{-1}$ gives

$$
R_{\gamma} \approx 1 \text{ pc } \eta_X L_{X,44} (E/1 \text{ GeV})
$$

 L_{Edd}

L

 L_{Edd}

 \backslash

1/4

 $40\pi \varepsilon_{_S}$

 $R = \frac{l_S}{l_S}$

3/4

 $\bm{M}^{\text{\tiny{l}}}_{\bm{8}}$

1/4

 \int $\overline{}$

 \backslash

 \int

 $\sqrt{}$

 $\sigma_{_{T}}$

10

 \setminus

 $\bigg($

 \setminus

R

Pair cascades in AGN

- \bullet Bednarek 1997: Synchrotron cascades by extremely highenergy gamma-rays.
- • Bednarek & Protheroe 1997: cascade from the jet-star interaction

2

з

(a)

Pair cascades in AGN

Blandford & Levinson 1995 Levinson & Blandford 1995

- Electrons are accelerated over the length of the jet.
- X-ray photons provide opacity for photon-photon pair production.
- y-sphere grows with photon energy.
- Higher energy γ-rays escape from larger distances and are less variable.
- Produces too many X-rays?

Self-supporting cascades

- All models assume ad hoc particle injection/acceleration .
- Too many parameters make prediction almost impossible.
- Most of the models consider no feedback from the external environment (except of the injection of external soft photons).
- The interaction between the jet and the external medium might be important and can produce strongly non-linear effects.

The mechanism is supercritical if the total amplification factor through all the steps is larger than unity:

where C_n denote the energy transmission coefficient for a given step. *A* = C_1C 2 *C* 3 *C* 4 *C* 5 >1

Photon breeding mechanism

Requirements

- 1. Some seed high-energy photons
- 2. Transversal or chaotic B-field
- 3. Isotropic radiation field (broad emission line region at 1017 cm)
- 4. Jet Lorentz factor $\Gamma \geq 4$ \blacksquare (more realistically Γ \geq 10).

Opacities in AGN jets

High-energy photons are converted to electronpositron pairs because the optical depth is large

$$
\tau_{\gamma\gamma}(\varepsilon) = n_{ph}\sigma_{\gamma\gamma}R\theta_{\text{jet}} =
$$

$$
= 60 \frac{L_{\text{disk},45}}{R_{17}}(10\theta_{\text{jet}})
$$

Pairs in the jet are produced with $\gamma = \! \epsilon \Gamma$

 $\gamma_{\rm min}$ ≈10 5 -mirrors the disk spectrum[,] $\gamma_{\rm max}$ $\approx 10^8$ -depends on the magnetic field and the soft photon field.

Gamma-ray emission sites

- \bullet Photon breeding needs soft (isotropic) photon background.
- 1. Near the accretion disk (if the jet is already accelerated with Γ \geq 10)
- 2. Broad emission line region at 1017 cm.
- 3. Dusty torus at parsec scale (if still $\Gamma \geq 10$).
- 4. Stellar radiation at kpc scale (if Γ≥10).
- 5. Cosmic microwave background at 100 kpc scale (if Γ \geq 10).

Origin of seed high-energy photons

- Particle acceleration in shocks, shear layers?
- Secondary particles from cosmic ray interaction?
- Gamma-ray background?

Let us start from the extragalactic gamma -ray background observed at Earth. Photon breeding increases energy density of high-energy photons by 20 orders of magnitude in 3 years.

Electron distribution (in the jet)

Photon breeding: electrons are "injected" at $\gamma{>}10^5$

Observations: the electron "injection" peaks between $\gamma_{\rm min}$ =10 4 -10 5 and $\gamma_{\rm max}$ =10 6 -10 7 in low-luminosity objects (Ghisellini et al. 2002, Krawczynski et al. 2002, Konopelko et al. 2003, Giebels et al. 2007).

might be produced at larger distances.

Decelerating & structured jet

1. Photon breeding provides friction between the jet and the external medium. 2. Produces a decelerating and "structured" jet.

Terminal jet Lorentz factor

- 1. Terminal Lorentz factor is smaller for larger initial $\Gamma_{\rm j}$
- 2. High radiative efficiency 10-80%.
- 3. Gradient of Γ implies broad emission pattern.
- 4. Predicts high gammaluminosity in radio galaxies (e.g. M87).
- 5. Solves the Doppler

Temporal variability

The system is super-critical.

Shows chaotic behaviour.

Flux doubling at time-scales $<$ $R_{\rm j}$ $\!/\rm c\Gamma^2$.

Conclusions

- Copious production of pairs seem to be unavoidable in relativistic jets
- \bullet **Photon breeding**

 \bullet

- 1. is based on well-known physics
- 2. is the self-consistent mechanism for acceleration of high-energy electrons (pairs)
- 3. has high radiative efficiency
- 4. shows fast variability and chaotic behaviour
- 5. produces decelerating, structured jet with a broad emission pattern. Predicts strong GeV-TeV emission for off-axis objects (radio galaxies)
- 6. is very promising in explaining high luminosities of relativistic jets in quasars

Photon-photon pair production $e⁺$ ephoto $\overline{\zeta}$ photon γ + $\gamma^ \gamma$ – Lorentz factor ${\bf \mathfrak{E}}$ 1 ${\bf \mathfrak{E}}$ 2 $\bm{\epsilon}$ $=h\nu/m_{e}c^{2}$ photon energy in units of electron rest-mass Cross-section for pair production $\epsilon^{}_1\epsilon^{}_2$ 1 $\sigma_{\rm T}/5$ \bf{C} $\approx\!\!3$ PAIR PRODUCTION in a power-law radiation field $\bm{\mathcal{E}}$ $n(\epsilon)$ 1 ε_1 $\varepsilon_2 \approx 3/\varepsilon_1$ Photons at ϵ_1 interact mainly with target $\,$ photons just above threshold at $\epsilon_2\thickapprox 2/\epsilon_1$ Opt/UV/ X-rays γ-rays Produced pairs Energy conservation γ^+ + γ^- = ϵ_2 + ϵ_1 ≈ ϵ_1 As $\gamma^+ \approx \gamma^- \Rightarrow \gamma^+ \approx \gamma^- \approx \epsilon_1/2$ $\sigma_{\rm T}$ -Thomson cross-section electron positron

Each particle has approximately half of the hard photon energy.

Model for a quasar

Alan Marscher

Angular distribution of radiation from the decelerating structured jet

- 1. Gamma-ray radiation is coming from the fast spine.
- 2. Optical is synchrotron from the slow sheath.
- 3. X-rays are the mixture.
- 4. Gamma-ray at large angles by pairs in external medium have luminosity $\Gamma_{\rm j}^{\rm 4}$ smaller than that at angle $1/\Gamma_{\rm j}$ (Γ j ² -amplification, Γ_j^2 - beaming). Compare to δ^3 ratio for $\theta = 1/\Gamma_\mathrm{j}$ and $\theta \approx 1$ which is $\Gamma_{\rm j}^{\rm 6}$
- 5. Photon breeding predicts high gamma-luminosity in radio galaxies (e.g. M87).
- 6. Solves the delta-crisis.

Fermi I acceleration in relativistic shocks

- \bullet Relativistic shock with Lorentz factor
- Particles crossing the shock can, in principle, gain Γ^2 in energy for every cycle.
- However, since shock is relativistic, for already a very small deflection angle θ ~1/ Γ , the shock catches up the particle.
- Thus, the gain is only factor of 2.
- \bullet Injection problem

Conversion mechanism

Discovered independently by Boris E. Stern (astro-ph/0301384), MNRAS, 345, 590 (2003) and Derishev E. et al. (astro-ph/0301263), Phys. Rev. D 68, 043003 (2003)

- • Instead of charged particles, energy is transported through the shock by neutral particles, e.g. photons.
- A hard photon is born downstream (1). Then it is converted in the upstream region to an e+– pair (2) (by $\gamma\gamma$ interaction with a soft photon).
- • Pair turns around (3) and is advected back to the downstream flow where it Comptonizes a soft photon and produces another hard
photon (1), thus closing the cycle.

