### Top physics with the CMS detector from re-discovery to new physics

Andrea Giammanco CP3 / UCL, Louvain-la-neuve, Belgium



Dimuonic ttbar event in CMS courtesy of Martijn Mulders



Strasbourg, 1 feb. 2008

# General philosophy of this talk

- I will try to make a case for a continuous line of research which starts with the re-observation of top quarks with very early data, and ends with searches, in the top sector, for phenomena forbidden in the SM
- This talk is explicitly biased towards my own past and present research interests

Examples: I will not talk about the measurement of the **mass** (although it's one of the most important top quark studies) nor about **resonances in M(tt)** (although it's a well-motivated search for new physics)

# Outline

#### • Part I: why and how?

- top physics at LHC, in a nutshell
- CMS as a tool for top physics
- Part II: expectations for CMS analysis
  - Reassessing the Standard Model
  - Precision top physics
  - Looking for new phenomena in the top sector

### Part I

Why top physics?

Why at LHC?

Is CMS fit and ready?

# What is Top



- A 3<sup>rd</sup> generation quark
- Charge +2/3 (\*)
- Lifetime: ~ 10<sup>-25</sup> s
- Mass: 170.9±1.8 GeV (~ M<sub>au</sub>)
- BR(t→Wb)~100% (\*\*)

(\*) this has been established at 90%CL only in 2006! Before, it was mainly "theoretical prejudice" to favour +2/3 over the -4/3 assignment.
(\*\*) mostly from CKM unitarity assumption. I will come back to this later.

# Why should we study Top? (the point of view of precision physics)

- It exists
  - But it's the less known quark: room for improvement
  - Its mass is already precise enough (~1%) to make it useful as a "standard candle"
- $M_t > M_W$ : this means that the W is not virtual –  $\Gamma$  proportional to  $G_F$ , not  $G_F^2$ . Result:  $\tau_{decay} < \tau_{hadr}$ 
  - Even "standard" top physics is unusual!
- Through its decays, we probe a "naked" quark
- $\tau_{decoherence} > \tau_{hadr} > \tau_{decay}$ : polarization is measurable(\*)

(\*) I will not talk about that in this seminar, but **polarization in single top, spin correlations in ttbar and W polarization** are sensitive to non-EW contributions to couplings

# Why should we study Top? (the point of view of discovery physics)

- It's the highest mass fermion: the Higgs likes a lot to couple with a top
- New particles may decay preferentially into top, especially in models which try to explain the "coincidence" y<sub>1</sub>~1
- Top may decay in new particles (e.g., a light charged H) or through new processes (e.g., FCNC enhanced by SUSY)

#### On the other hand:

- Top is a major background for a lot of "new physics" signatures: until you know its phenomenology in detail, very hard to make serious claims for discoveries
  - Memento UA1: after W and Z, in 1984 it "discovered" the top at 40 GeV and SUSY at the 100 GeV scale (culprits: W/Z+jets)
  - Concrete example: ttH→ttbb (we need to know ttjj)

# LHC is a Top factory

• tt
· gluon fusion (90%) or qq
annihilation (10%)  $\sigma_{NLL} = 833^{+52}_{-39} \text{ pb}$ 



• Electroweak production ("single top") is not negligible:



### GIM-suppressed decays (FCNC)



BR in SM

4.6 10 -14

**10** -14

**4.6 10** -12

BR in LR

FCNC decay

 $t \rightarrow \gamma q$ 

 $t \rightarrow Zq$ 

 $t \rightarrow g q$ 

BR in TC

BR in 2HDM-II

~10-7

~10 -8

~10 -5

BR in QS



| $t \rightarrow \gamma q$ |
|--------------------------|
| •→Zq                     |
| ` <i>→gq</i>             |
| ►.                       |

# Single Top and new physics

- The same final states of the SM single top (i.e. tq, tb, Wt) can come from non-SM fundamental processes
- t': if M<sub>b'</sub>>M<sub>f'</sub>, main decay is Wb
  - And for M<sub>t</sub>>270 GeV, the t'q production mode is favored over t't
     t't
- W' or  $W_{KK}$  would enhance the s-channel
  - If their coupling is SM, they will be observed in leptonic decays much earlier than in single top
  - But the W' b.r.'s are model dependent, and in some models the coupling to leptons is suppressed (W<sub>R</sub>: "wrong" helicity!)
- Any model with FCNC (e.g. SUSY) enhances t-channel: while SM needs a b in the initial state, FCNC can have a u



Wt gets sizable virtual corrections (up to +13%) from colored SUSY particles (Beccaria et al., EPJ C53 (2008))

# $V_{H}$ in a 4x4 or 4x3 matrix

- SM, 3x3: 0.9990<|V<sub>th</sub>|<0.9992 @90%CL
- In hep-ph/0607115 (EPJ C 2007) we reexamined the direct and indirect experimental constraints when CKM is minimally extended to a 4<sup>th</sup> family, or to a single pseudo-vector quark (b'/t')
- $V_{tb} \sim V_{tb} \sim V_{tb} \sim V_{tb} \sim V_{tb} \sim V_{tb} = 0$ ;  $\theta$ : t-t' mixing angle (u-t' and c-t' mixings are very tightly constrained by experiments); limits depend on M<sub>r</sub> (Tevatron limit:  $M_{,}/M_{,}>1.5$ )

• With pseudo-vector t':  $V_{tb} > 0.91$ This sets a clear goal for the precision that we want to achieve on Vtb

 Nota bene: here is assumed that no other particles exist; a more rich zoology at low energy can further relax the limits

# Limits on $V_{_{ti}}$ from R and single top



Study from hep-ph/0607115 updated in arXiv:0801.1800 [hep-ph], "Collider aspects of flavour physics at high Q" using Tevatron data on single top and R

### From Tevatron to LHC

|                            | 1.96 TeV                       | 14 TeV                               |        |
|----------------------------|--------------------------------|--------------------------------------|--------|
| ttbar pairs                | 5.06 <sup>+0.13</sup> -0.36 pb | 833 <sup>+52</sup> -39 pb            | (x170) |
| Single top<br>(s-channel)  | 0.88±0.06 pb                   | 10.7±0.7 pb                          | (x10)  |
| Single top<br>(t-channel)  | 1.98±0.14 pb                   | 247±10 pb                            | (x120) |
| Single top<br>(Wt channel) | <mark>0.15</mark> ±0.04 pb     | 66±2 pb<br>will be discovered at LHC | (x400) |
| Wjj (*)                    | ~1200 pb                       | ~7500 pb                             | (x6)   |
| bb+other jets (*)          | ~2 <b>.</b> 4x10⁵ pb           | ~5x10⁵ pb                            | (x2)   |

(\*) with kinematic cuts in order to better mimic signal Belyaev, Boos, and Dudko [hep-ph/9806332]

Analyses will be quite different from Tevatron

# CMS and top physics

Top physics is like pentathlon for athletics: it doesn't necessarily require an outstanding performance from a single subdetector (like, e.g.,  $B_s \rightarrow \mu\mu$  or  $H \rightarrow \gamma\gamma$ ) but all the subdetectors have to be quite good.

A semileptonic top decay gives:

• an electron (ECAL+Tracker)

or a muon (Muon chamb.+Tracker) or a tau (Tracker + HCAL + ECAL)

• jets (HCAL+ECAL)

- secondary vertexes (Tracker, in particular Pixels)
- missing energy (HCAL+ECAL)

With ParticleFlow, the Tracker improves significantly jets/MET/taus



# Getting ready: Magnet Test / Cosmic Challenge, Slice Test, etc.

2007

ST (TIF)



Module efficiency @TIF Slice Test



### Almost there



- 100% of HB
- 50% of HF, HE
- 20% of DT, HO
- 10% of barrel RPC, EB (for a few days)
- 0.04% of strip tracker (6 modules)
- First HLT tests

A cosmic shower seen in HCAL and the Drift Tubes, triggered by RPCs

### Part II

#### Prospects for CMS, based on published or ongoing MC analyses

# Rediscovering top

- Although not scientifically very relevant *per se*, the "re-discovery" of the SM particles will constitute an important benchmark for the LHC experiments
- While W and Z will be very simple from the point of view of the event selection, top quark will be the first complex final state to be studied
- Only "easy" topologies will be exploited at this stage: single-leptonic (high BR, reasonable S/B), and dileptonic, in particular eµ (small BR, but high S/B)
- This is the topic of our "2007 paper" **AN-2007/022**, *"Early measurements of top quark pair events with the first data of CMS"*

# How we will observe the first european top quarks

#### DILEPTONIC

#### SEMI-LEPTONIC



No b-tag; highest-pt combination of 3j; angular selection for jets from W (other options in a backup slide)

CMS AN 2007/022 in progress

J.Caudron, AG, D.Kcira, V.Lemaitre, in CMS AN 2007/022

# The eµ channel

- b-tagging is not used (in order to minimize impact of Tracker misalignment)
- Three complementary strategies are being explored:
  - M1: Inclusive leptonic strategy



### Lepton selection



|                           | signal          | W+0jet          | W+1jet            | W+2jets         | W+3jets           | semi-leptonic $t\bar{t}$ | DY                |
|---------------------------|-----------------|-----------------|-------------------|-----------------|-------------------|--------------------------|-------------------|
| before cuts:              |                 |                 |                   |                 |                   |                          |                   |
| $N_{evts}$                | 5668            | 195933          | 191996            | 180937          | 68199             | 8738                     | 546000            |
| cross-section (pb)        | 18.5            | 30000           | 8000              | 2500            | 722               | 360                      | 7559              |
| A) stringent lepton cuts: |                 |                 |                   |                 |                   |                          |                   |
| cross-section (pb)        | $3.48 \pm 0.11$ | < 0.15          | < 0.04            | < 0.01          | $0.021 \pm 0.015$ | $0.12 \pm 0.07$          | $0.042 \pm 0.024$ |
| B) medium lepton cuts:    |                 |                 |                   |                 |                   |                          |                   |
| cross-section (pb)        | $6.59 \pm 0.15$ | < 0.15          | $0.083 \pm 0.059$ | $0.14 \pm 0.04$ | $0.064 \pm 0.026$ | $0.41 \pm 0.13$          | 0.73±0.10         |
| C) loose lepton cuts:     |                 |                 |                   |                 |                   |                          |                   |
| cross-section (pb)        | 8.16±0.16       | $0.31 \pm 0.22$ | $0.71 \pm 0.17$   | $0.43 \pm 0.08$ | $0.15 \pm 0.04$   | 0.87±0.19                | $2.55 \pm 0.19$   |
|                           |                 |                 |                   |                 |                   |                          |                   |

Luminosity [pb<sup>-1</sup>]

### M2: track-based event variables



The track associated to the lepton is excluded

Other variables were also considered: aplanarity, sphericity, circularity, centrality



### Results

![](_page_23_Figure_1.jpeg)

![](_page_23_Figure_2.jpeg)

N<sub>evt</sub> at 10pb<sup>-1</sup>/ bin

M2 & M3: background shapes and normalization from  $\mu+\mu-$  sample

# M3: jet selection

- |η<sup>jet</sup>|<2.4
- Remove jets that match isolated electrons
- At least 2 jets with p<sub>T</sub> higher than a given threshold
- Different jet algorithms, with different inputs (tracks, calo towers, even PF objects if considered reliable): differently affected by different syst.

![](_page_24_Figure_5.jpeg)

Note: we are not reconstructing mass peaks, so  $jet \rightarrow parton$  calibration is not an issue

## Calo vs Tracker

We need the analysis to be robust against the eventuality of "catastrofic" malfunctioning of one of the sub-detectors. Luckily, we found that jet selections based on calorimeter and on tracking informations have rather similar significancies.

![](_page_25_Figure_2.jpeg)

Not surprisingly, the best significance is with Pflow: it combines the maximum amount of information

# Different jet clustering algorithms

Extrapolating our soft-QCD models to LHC gives very large variations on the expected levels of gluon radiation and Underlying Event (UE). And wildly variating inst. lumi at the beginning will affect Pile-Up (PU). **Different algorithms** with different parameters will have different sensitivities to physics systematics (AG et al. in Les Houches 2005, hep-ph/0604120)

![](_page_26_Figure_2.jpeg)

Bonus for (fast-)KT algo: event-by-event UE/PU-subtraction (Cacciari, Salam 2005)

# First "useful" top measurements

- Cross sections in various final states (semi-lep and dilep, including taus) are the topic of our "2007 paper"
   AN-2007/025, "Measurements of the top quark pair production cross section with L=100 pb<sup>-1</sup> using the CMS detector"
- One section is devoted to the exclusive cross section tt+Nj, in the dileptonic channel
  - Important per se as a study of radiation
  - Even more important if seen as a way to deduce the irreducible ttbb background to ttH

# Strategy for tt+Nj

- Select dileptonic events
  - Clean event selection (2I, Z-veto, MET, 2j, mild b-tagging)
  - Easy "extra-jet" definition: a non-b jet (from 3<sup>rd</sup> jet onward, in btag ordering)
- Clean up the jet sample
  - avoid fakes or pathological jets
- Unfolding: correct reco jet Pt to the GenJet Pt
  - Binned unfolding function trained on MC (validated on indep. MC)
- Correct for selection efficiency and background
  - Both as functions of Njets (reco)
  - for W+jets we use  $Z(\rightarrow \mu\mu)$ +jets and apply a scale factor

### Extra-jet<sup>(\*)</sup> spectra with 100/pb (\*) = non-tagged

![](_page_29_Figure_1.jpeg)

Raw "data" (AlpGen) vs MC truth, stat error only

#### After efficiency correction and unfolding extracted from "MC" (here "MC" and "data" are independent)

#### CMS NOTE 2006/084 PhysTDR vol.2

# Single top: t-channel

![](_page_30_Figure_2.jpeg)

#### **Selection:**

- 1 muon (isolated), MET (type I), 2 jets
- 1 jet b-tagged and central, 1 jet forward
- $\boldsymbol{\Sigma}_{\! \boldsymbol{\tau}}$  is defined as vectorial sum of

transverse momenta (including MET)

• Cuts on 
$$\Sigma_{T}$$
,  $M_{T}^{W}$  and  $M_{top}$ 

![](_page_30_Figure_9.jpeg)

#### • S/B=1.3

| sample       | selected | $\Delta N_{th}$ | $\Delta N_{ m Lum}$ | $\Delta N_{\rm b-tag}$ | JES | tot.  | $\Delta N_{\rm stat}$ |
|--------------|----------|-----------------|---------------------|------------------------|-----|-------|-----------------------|
| t-channel    | 2330     | 93.2            | 116                 | 93.2                   | 26  | 177.5 | 48.3                  |
| $t\bar{t}$   | 1147     | 80.3            | 57.3                | 45.9                   | 84  | 137.5 | 33.9                  |
| $Wb\bar{b}j$ | 188      | 32              | 9.4                 | 7.5                    | 4.5 | 34.5  | 13.7                  |
| W j j        | 402      | 20              | 20                  | 16.1                   | 0   | 32.6  | 20                    |

Δσ/σ = 2.7% (stat) + 8.1% (syst) + 5% (lumi) = 9.9% @10fb<sup>-1</sup>

CMS NOTE 2006/086 PhysTDR vol.2

# Single top: W-associated

#### Selection (dileptonic):

- 1e+1 $\mu$  (isolated), MET
- 1 jet, b-tagged
- S/B=1/3

In both cases, almost all the surviving background is ttbar; normalization over data (control samples with one more jet, in both channels) cancels out most of the systematics.

### Δσ/σ (2I)=8.8%(stat)+23.9%(syst)+5%(lumi) Δσ/σ (1I)=7.5%(stat)+16.8%(syst)+5%(lumi)

#### Selection (single lepton):

No. Statestates

- 1 e/ $\mu$  (isolated), MET
- 3 jets, 1 b-tagged
- $\bullet$  Cuts on  $M_{_{T}}^{^{_{W}}}$ , M(jj),  $M_{_{top}}$  and other topological variables

• S/B=1/5

![](_page_31_Figure_13.jpeg)

#### CMS NOTE 2006/084 PhysTDR vol.2

# Single top: s-channel

![](_page_32_Figure_2.jpeg)

- s-channel: 273 $\pm$ 3(JES) $\pm$ 11(btag) $\pm$ 1.5(M<sub>top</sub>) $\pm$ 2(PDF) $\pm$ 1.5(ISR/FSR)
- t-channel: 629±25(theo)±8(JES)±25(btag)
- ttbar: 1258±63(theo)±75(JES)±50(btag)
- Wbb: 155±8(theo)±7(JES)±6(btag)

#### **Selection:**

- 1  $e/\mu$  (isolated), MET)
- 2 jets, both b-tagged
- Cuts on Σ<sub>T</sub>, M<sup>W</sup>, M<sub>top</sub> and other topological variables
   S/B=1/7

A normalization over data had to be developed (two control samples: one for tt->11, one for tt->21) in order to keep under control the tt background and cancel most of the systematics. What remains is mostly due to the JES systematic alone.

w

#### Δσ/σ = 18% (stat) + 31% (syst) + 5% (lumi) = 36% @10fb<sup>-1</sup>

# $\mathsf{R}=\mathsf{BR}(\mathsf{t}\longrightarrow\mathsf{Wb})/\mathsf{BR}(\mathsf{t}\longrightarrow\mathsf{W}+\mathsf{any})$

- Analysis boils down to counting the number of b-tags
  - $\epsilon^{\mbox{\tiny btag}}$  and mistag rate to be estimated from other samples
  - In semilep channel, jet assignment based on kinematic fit
  - Bkg subtraction by flipping the leading jet dir. in the kin.fit
  - Result expected after 1 fb<sup>-1</sup>:  $\Delta R = \pm 0.08(\text{stat}) \pm 0.09(\text{syst})$
  - Dileptonic: lower statistics but better purity; easier to classify jets from t $\rightarrow$ q (no W $\rightarrow$ qq̄, other jets come from rad/UE/PU)
- Worst bkg is "internal": gluon splitting in tt events (g→cc̄,bb̄)
  - Very hard to measure independently (even at LEP it was tough!)
  - Parton Showers underestimate it: need ttbb diagram
  - It can mask New Physics!  $t\bar{t}\rightarrow b\bar{q}$  may be interpreted as  $t\bar{t}\rightarrow b\bar{b}$

#### CMS NOTE 2006/093 PhysTDR vol.2

# FCNC: t→Zq

![](_page_34_Figure_2.jpeg)

• BR=1.3x10<sup>-13</sup> in SM, <10<sup>-4</sup> in SUSY with R-parity violation, <10<sup>-2</sup> with new quarks; limit <0.14@95% (LEP2), <0.106@95% (CDF)

- 3 isolated leptons
- "SM side":
  - M<sub>⊤</sub>(I,MET)~M<sub>w</sub>
  - M(I,v,b)∼M,
- "FCNC side":
  - M(I<sup>+</sup>I<sup>-</sup>)~M<sub>z</sub>
  - M(l<sup>+</sup>l<sup>-</sup>,q)~M<sub>t</sub>
- Main bkg: SM tt→2l (+1l from b)
- Fragmentation is an important syst
- Sensitivity (5σ):
  - ~1.5x10<sup>-3</sup> (L=10 fb<sup>-1</sup>)
  - ~4x10<sup>-4</sup> (L=100 fb<sup>-1</sup>)

#### CMS NOTE 2006/093 PhysTDR vol.2

# FCNC: $t \rightarrow \gamma q$

![](_page_35_Figure_2.jpeg)

- BR=5x10<sup>-13</sup> in SM, <10<sup>-5</sup> in SUSY with R-parity violation, <10<sup>-5</sup> with new quarks; limit<0.0059@95% (HERA)
- 1 isolated lepton, 1 isolated high-pt  $\gamma$
- "SM side":
  - M<sub>T</sub>(I,MET)~M<sub>W</sub>
  - M(I,v,b)∼M<sub>t</sub>
- "FCNC side":
  - M(γ,q)∼M<sub>t</sub>
- Main bkg: SM tt, single top
- Sensitivity (5σ):
  - $\sim 8 \times 10^{-4}$  (L=10 fb<sup>-1</sup>)
  - ~3x10<sup>-4</sup> (L=100 fb<sup>-1</sup>)

### FCNC prospects

![](_page_36_Figure_1.jpeg)

### FCNC prospects

![](_page_37_Figure_1.jpeg)

## Conclusions

- LHC analyses will have first to re-establish the "known knowns", then measure the "known unknowns", and at last (logically, not necessarily chronologically) quest for the Unknown
  - re-discover top and make sure that everything makes sense (fix calibrations / bugs / biases in selection / etc.), check models in small phase space corners (especially if sampled by other analyses), measure observables sensitive to deviations from SM
- The top sector could be a window on new physics

– V<sub>tb</sub> at 5% ( $\Delta\sigma/\sigma$ , $\Delta R$  ~10%) is THE goal for single top & R

- Note: CMS is designed to be particularly strong in muon/electron/photon final states
  - We are in the best position to explore FCNC decays

### **BACKUP SLIDES**

CMS NOTE 2006/065

# FCNC: Same-sign pair production

- No hope to constrain the FCNC *tgu* coupling in decays, but in production spectacular uu→tt signature
  - Additional motivation: SUSY cascades
- Standard di-leptonic selection (ee, eμ, μμ), measurement of R=N<sub>ss</sub>/N<sub>os</sub>
- Main bkg's: fake leptons, charge misid.
- In MC, under the assumption of SM:
  - $R_{\mu\mu}$ =0.0027±0.0007
  - $-R_{ee}^{=}=0.0389\pm0.0033$
  - $R_{e\mu}$ =0.0128±0.0013

#### significance vs. SS tt x-sec.

![](_page_40_Figure_11.jpeg)

# Counting the "interesting" jets

- These are reco jets
- The 2 highest-btag jets are ignored
- Et>30 GeV, |η|<2.4
- No correction for selection efficiency in this slide
- "data": alpgen ttbar samples mixed with proper proportions

![](_page_41_Figure_6.jpeg)

number of untagged jets

![](_page_41_Figure_7.jpeg)

number of untagged jets

### Bkg vs extra jets number

![](_page_42_Figure_1.jpeg)

### Njets vs model

![](_page_43_Figure_1.jpeg)

### Njets vs miscalibrations

![](_page_44_Figure_1.jpeg)

# Single Top

Three "single top" production modes in the Standard Model:

![](_page_45_Figure_2.jpeg)

Directly related to |V<sub>tb</sub>|, not a ratio

- Possibility to study top properties (mass, <u>polarization</u>, charge) with less reconstruction ambiguities than in ttbar
- Wt is out of Tevatron reach, but it will be accessible to LHC
- Together the 3 channels provide complementary informations on Wtb coupling, since they probe it for q<sup>2</sup><0, q<sup>2</sup>>0, q<sup>2</sup>=0

# Single Top as noise

- In the H→WW→IvIv search, after jet veto the Wt/tt ratio increases
  - Wt becomes a significant contamination
  - Difficult to extract it from dedicated control samples, we currently rely on NLO estimates to disentangle it from the "tt control sample"
    - Campbell et al., Les Houches 2005 report: hep-ph/0604120
- In the gb→H<sup>±</sup>t search (H→τν), gb→Wt (W→τν) can only be reduced by exploiting the spin difference (tau spectrum and/or angular distribution)
- In general, whatever has ttbar as background (eg SUSY) has also a single top contamination

# Single Top as a benchmark

- The most abundant production mode, t-channel, is characterized by its forward energetic jet
- Precious signature for isolating it from background, but also quite complicated η region, for both detector (HF) and phenomenology (UE, PU, ...)
- But it's mandatory to understand this region as soon as possible: forward jets are also the signature of VBF

![](_page_47_Figure_4.jpeg)

# Single top after the TDR

- G.Petrucciani and AG in summer 2006 further refined all 3 analyses, in particular:
  - Jet collection cleaning, e.g. use of tracks from prim.vtx
  - More control samples for bkg normalization
  - More systematics and backgrounds
  - Improvements: t-channel 10%→8%, Wt(SL) 19%→14%, Wt(DL) 25%→18%, s-channel 36%→24%
  - Still with the old software (ORCA+FAMOS)
  - http://indico.cern.ch/conferenceDisplay.py?confld=4945
  - Note: Particle Flow shown to have great impact in the pt region where the bulk of our signal is; in the to-do list!

# Not only x-section: new physics in Polarization

- Top's chirality is 100% left-handed in EWK production
  - $\tau_{decoherence}$  >  $\tau_{decay}$ : decay products are probes of polarization
  - $(d\Gamma/\Gamma)/d(\cos \theta) = \frac{1}{2}(1 + A\cos \theta)$
  - -A(I)=+1, A(b)=-0.40, A(v)=-0.33
- Problem: at the top mass, helicity  $\neq$  chirality
  - Solution: in the top frame, spin axis d-type quark direction
  - Which d-type quark?
    - Tevatron, s-channel: take the anti-proton direction (correct in 98% of cases); not applicable at LHC
    - LHC: take the recoil quark's direction in t-channel
    - How-to: boost into reco top frame, plot angle between lepton and untagged jet, correct for acceptance/bkg, extract slope

![](_page_49_Figure_11.jpeg)

### R: bkg subtraction

 $\chi^2$  Normale = f(P1,P2,P3,P4,Met,Lep)

 $\chi^2 \operatorname{Flip} = f(-P1, P2, P3, P4, Met, Lep)$ 

![](_page_50_Figure_3.jpeg)

### R: bkg subtraction

![](_page_51_Figure_1.jpeg)

Normal - Flip

![](_page_52_Figure_0.jpeg)

![](_page_53_Figure_0.jpeg)

# Some non-SUSY models with enhanced FCNC

- 2HDM (2 Higgs Doublet Model)
  - Type II: down quarks couple with only one H doublet
  - Type III: with both doublets
- TC2: technicolor + topcolor
- LR (Left-Right): additional U(1) which gives B-L violations; it has an additional vector-like quark
- QS (Quark Singlet): additional Q=+2/3 quark, singlet under SU(2)

![](_page_55_Figure_0.jpeg)

Top Meeting, Dec 18, 2007

18/30

Martijn Mulders, CERN

# Subtracting QCD in semilep events

- Matrix method:
  - Define loose (I) and tight (t) lepton cuts
  - 2 unknowns: "signal" (ttbar but also W), "QCD"
    - $N^{(t,l)} = N_s^{(t,l)} + N_{QCD}^{(t,l)}$
  - Define  $\boldsymbol{\epsilon}^{I \rightarrow t}$  : fract of I which also pass the t selection
    - N<sup>I</sup>=N<sub>S</sub><sup>I</sup>+N<sub>QCD</sub><sup>I</sup>
    - $N^{t} = \varepsilon_{s}^{i \rightarrow t} N_{s}^{i} + \varepsilon_{QCD}^{i \rightarrow t} N_{QCD}^{i}$

2 equations 2 unknowns

- Efficiencies from data:
  - "W-like" leptons from Z→II (tag & probe)
  - fakes from I+jets events with low MET
    - This point deserves more discussion, see slide "Fake rates..."

# Subtracting bkg in dilep events (1)

- Like-sign method:
  - assume SS~OS in bkg; only true for misid hadrons
- Matrix method:
  - Define loose (I), medium (m), tight (t) lepton cuts
  - 3 unknowns: "signal" (ttbar but also Z), "W", "QCD"

• 
$$N^{(t,m,l)} = N_{S}^{(t,m,l)} + N_{W}^{(t,m,l)} + N_{QCD}^{(t,m,l)}$$

– Efficiencies:  $\epsilon^{I \rightarrow m}$ ,  $\epsilon^{I \rightarrow t}$  (fract of I which are also m or t)

- $N^{m} = \varepsilon_{S}^{I \to m} N_{S}^{I} + \varepsilon_{W}^{I \to m} N_{W}^{I} + \varepsilon_{QCD}^{I \to m} N_{QCD}^{I}$
- $N^{t} = \varepsilon_{s}^{i \to t} N_{s}^{i} + \varepsilon_{w}^{i \to t} N_{w}^{i} + \varepsilon_{QCD}^{i \to t} N_{QCD}^{i}$

3 equations 3 unknowns

# Subtracting bkg in dilep events (2)

- Matrix method (cont'd):
  - Efficiencies from data:
    - $\varepsilon_s^{I \to m}$ ,  $\varepsilon_s^{I \to t}$ : "W-like" leptons from Z $\rightarrow$ II (tag & probe)
    - $\epsilon_{QCD}^{I \to m}$ ,  $\epsilon_{QCD}^{I \to t}$ : fakes from I+jets events with low MET
      - This point deserves more discussion, see slide "Fake rates..."
    - $\epsilon_{W}^{I \to m}$ ,  $\epsilon_{W}^{I \to t}$  from both of the above (uncorrelated)
  - Solve the system of equations, get  $N_s^{+}$ ,  $N_w^{-+}$ ,  $N_{QCD}^{-+-}$

### Fake rates from control regions

- Region C: Isolation > 0.2 and  ${\not\!\! E}_T$  > 20 GeV
- Region D: Isolation < 0.1 and  $\not\!\!E_T > 20$  GeV.

![](_page_59_Figure_3.jpeg)

FIG. 15: Definition of the sideband regions used to estimate the non-W background. Lepton isolation versus missing transverse energy distribution for  $t\bar{t}$  simulated events is also shown.

- All other selection cuts are applied
- Ideally, "W-like" leptons (tt/W/Z events) populate
   D and are rare in A,B,C
- QCD contamination in D is  $N_D^{QCD} = N_C N_B / N_A$
- Caveat: we assume MET and iso uncorrelated
  - MET uncorrected is ok
  - jet misid as electron  $\rightarrow$  pt underestim  $\rightarrow$  wrong MET!

# Getting ready for data

- February
  - Magnet test at low current
  - Weekly "private runs" (1 or 2 subdet + Trigger)
  - DAQ/Trigger consolidation
- March
  - End of tracker cabling
  - Cosmic run at 0T : TK, DT 3 wheel, ECAL, HCAL, CSC+, RPC
- April
  - Beam pipe closed
  - Pixel system installed
- May
  - Combined Computing Readiness Challenge
  - Cosmic Run at 4 T. CMS ready for beam, taking cosmics

### LHC General schedule

- The engineering run originally foreseen at end 2007 is precluded by delays in installation and equipment commissioning.
- 450 GeV operation is part of normal setting up procedure for beam commissioning to high-energy
- The general schedule being reassessed, accounting for inner triplet repairs and their impact on sector commissioning

| _ | Machine closed                  | April 2008 |
|---|---------------------------------|------------|
| _ | Beam commissioning starts       | May 2008   |
| _ | First collisions at 14 TeV c.m. | July 2008  |

- Pilot run pushed to 156 bunches for reaching 10<sup>32</sup>cm<sup>-2</sup>·s<sup>-1</sup>as soon as possible
- No provision for major mishaps, e.g. additional warm-up/cooldown of sector: a success-oriented schedule !

32

![](_page_62_Picture_0.jpeg)

## Time scale

#### S.Redaelli, 31/1/2008

(beam time is given, assuming 100% availability)

|    | Activity                            | Rings  | Beam Time<br>[days] |
|----|-------------------------------------|--------|---------------------|
| 1  | Injection and first turn            | 2      | 4                   |
| 2  | Circulating beam                    | 2      | 3                   |
| 3  | 450 GeV – initial commissioning     | 2      | 4                   |
| 4  | 450 GeV – detailed optics studies   | 2      | 5                   |
| 5  | 450 GeV increase intensity          | 2      | 6                   |
| 6  | 450 GeV - two beams                 | 1      | 1                   |
| 7  | 450 GeV - collisions                |        | 2                   |
| 8a | Ramp - single beam                  | ime    | 8                   |
| 8b | Ramp - both beams (50% eff          | ic.)   | 2                   |
| 9  | 7 TeV – top energy checks           | $\sim$ | 2                   |
| 10 | Top energy collisions               | 1      | 1                   |
|    | TOTAL TO FIRST COLLISIONS at 7 TeV  |        | 30                  |
| 11 | Commission squeeze                  | 2      | 6                   |
| 10 | Set-up physics - partially squeezed | 1      | 2                   |
|    | TOTAL TO PILOT PHYSICS RUN          |        | 46                  |

# A hypothetical LHC startup month in 2008...

![](_page_63_Figure_1.jpeg)

J.Alcaraz, Moriond 2007