Assessing the Reconstruction of Macro-molecular Assemblies: the Example of the Nuclear Pore Complex

<u>F. Cazals</u>, Algorithms - Biology - Structure, INRIA Sophia-Antipolis T. Dreyfus, Algorithms - Biology - Structure, INRIA Sophia-Antipolis V. Doye, Institut Jacques Monod, CNRS, Paris

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Centre de recheche SOPHIA-ANTIPOLIS-MÉDITERRANÉE

(日)

500

Reconstructing large protein assemblies Modeling with uncertainties: Toleranced Models Assessing the reconstruction of assemblies Mining contacts: contact probabilities Mining complexes: stoichiometry, volume ratio Mining complexes: graphical models Conclusion Software of potential interest

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Structural Dynamics of Macromolecular Processes Reconstructing Large Macro-molecular Assemblies

- Molecular motors
- NPC
- Actin filaments
- Chaperonins
- Virions
- ATP synthase

Core questions

Difficulties

Modularity Flexibility Reconstruction / animation Integration of (various) experimental data Coherence model vs experimental data

▷Ref: Russel et al, Current Opinion in Cell Biology, 2009

Reconstructing Large Assemblies:

a NMR-like Data Integration Process

▷ Four ingredients

- Experimental data
- Model: collection of balls
- Scoring function: sum of restraints restraint : function measuring the agreement ≪model vs exp. data≫
- Optimization method (simulated annealing,...)

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

▷ Restraints, experimental data and ... ambiguities:

Assembly	: shape	cryo-EM	fuzzy envelopes
Assembly	: symmetry	cryo-EM	idem
Complexes:	: interactions	TAP (Y2H, overlay assays)	stoichiometry
Instance:	: shape	Ultra-centrifugation	rough shape (ellipsoids)
Instances:	: locations	Immuno-EM	positional uncertainties

▷Ref: Alber et al, Ann. Rev. Biochem. 2008 + Structure 2005

The Nuclear Pore Complex: Structure and Reconstruction

- Eight-fold axial + planar symmetry

- 456 protein instances of 30 protein types $(456 = 8 \times (28 + 29))$

Reconstruction results: N = 1000 optimized structures (balls):
(i) blending the balls of all the instances of one type over the N structures:

one 3D probability density map per protein type

(ii) superimposing these maps provides a global fuzzy model

Qualitative results:

Our map is sufficient to determine the relative positions within NPC ...limited precision; not to be mistaken with the density map from EM The localization volumes ... allow a visual interpretation of proximities

▷Ref: Alber et al; Nature; 450; 2007

NPC: Example Density Maps Stoichiometry vs number of connected components

Cases: equal (Nup157); larger (Sec13)

Cases: smaller (Nup170, Pom152)

 \bigcirc

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▶ Two types of problems:

number of connected components vs stoichiometry volume of each connected component vs. volume estimated from the sequence

>Ref: Alber et al; Nature; 450; 2007

Uncertainties of the Density Maps

Volume of connected components of non empty voxels vs. reference volume (estimated from the sequence)

Putative Models of Sub-complexes: the Y-complex

The Y-complex: pairwise contacts

▷Ref: Blobel et al; Nature SMB; 2009

> Y-based head-to-tail ring vs. upward-downward pointing

▷Ref: Seo et al; PNAS; 2009

▷Ref: Brohawn, Schwarz; Nature MSB; 2009

 $\Rightarrow Bridging the gap between both classes of models?$

The Zoo of curved Voronoi diagrams

▷ Power diagram: $d(S(c,r),p) = ||c-p||^2 - r^2$

▷ Apollonius diagram: d(S(c, r), p) = ||c - p|| - r ▷ Mobius diagram: $d(S(c, \mu, \alpha), p) = \mu ||c - p||^2 - \alpha^2$

▷ Compoundly Weighted Voronoi diagram: $d(S(c, \mu, \alpha), p) = \mu ||c - p|| - \alpha$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Building toleranced models (Embracing the geometric noise.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Uncertain Data and Toleranced Models: the Example of Molecular Probability Density Maps

Probability Density Map of a Flexible Complex:

 Each point of the probability density map: probability of being covered by a conformation

Question:

accommodating high/low density regions?

▷ Toleranced ball $\overline{S_i}$

- Two concentric balls of radius $r_i^- < r_i^+$: inner ball $\overline{S_i}[r_i^-]$: high confidence region outer ball $\overline{S_i}[r_i^+]$: low confidence region
- ▷ Space-filling diagram \mathcal{F}_{λ} : a continuum of models - Radius interpolation: $r_i(\lambda) = r_i^- + \lambda(r_i^+ - r_i^-)$

Multiplicative weights required Ref: Cazals, Dreyfus; Symp. Geom. Processing; 2010

Toleranced Models for the NPC

- ▷ Input: 30 probability density maps from Sali et al.
- Output: 456 toleranced proteins
- ▷ Rationale:
 - \rightarrow assign protein instances to pronounced local maxima of the maps
- Geometry of instances:
 - four canonical shapes
 - controlling $r_i^+ r_i^-$: w.r.t volume estimated from the sequence

(i) Canonical shapes (

(ii) NPC at
$$\lambda = 0$$
 (iii) NPC at $\lambda = 1$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

GROWING TOLERANCED MODELS AND ENUMERATING THEIR FINITE SET OF TOPOLOGIES (SPOTTING STABLE STRUCTURES.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Multi-scale Analysis of Toleranced Models: Finite Set of Topologies and Hasse Diagram

▷ Red-blue bicolor setting: red proteins are types singled out (e.g. TAP)

- Complexes and skeleton graphs: Hasse diagram
- Finite set of topologies: encoded into a Hasse diagram
 - Birth and death of a complex
 - Topological stability of a complex $s(c) = \lambda_d(C) \lambda_b(C)$
- Computation: via intersection of Voronoi restrictions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(?)

The Union-Find Algorithm

▷Ref: R.E. Tarjan; Data Structures and Network Algorithms; 1983

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 - のへぐ

On Intersecting Balls...

Computational Geometry

Curved voronoi diagrams Certified numerics (algebraic numbers) Algebraic topology Homology calculations

Stability in toleranced models

Morse theory

Persistence theory

(日) (雪) (日) (日) (日)

Topological changes undergone by level sets Stability of geometric/topological features

PROEMINENT CONTACT FREQUENCIES OUT OF THE $\binom{30}{2} + 30 = 465$ PAIRS OF PROTEIN TYPES

– Contact frequency: fraction of the 1000 models with \geq one contact between instances of these types

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Freq. split into 3 classes, a = 0.25, b = 0.65: $F_1 : f_{ij} \le a; F_2 : a < f_{ij} < b; F_3 : b \le f_{ij}$

 Limitations: contact can be shallow stoichiometry missing

Contact Probabilities versus Contact Probabilities

▷ Over-represented in Sali et al: $Nup84 - Nup60 : f_{ij} = 0.07$

▷ Under-represented in Sali et al: $Nup192 - Pom152 : f_{ij} = 0.98$

- \triangleright Contacts for two types p_i and p_j
- Consider: the Hasse diagram for $\lambda \in [0, \lambda_{max}]$ a stoichiometry $k \ge 1$
- Define: $\lambda(p_i, p_j)$: smallest λ \exists k contacts between p_i and p_j
- Contact proba.: $p_{ij}^{(k)} = 1 \lambda(p_i, p_j)/\lambda_{max}$ - Contact curve: $p_{ij}^{(k)} = f(k)$

Note: λ_{max} tuned to match the uncertainties on the input

Contact Curves: Insights on (models of) the Y-complex

С

Protein types	f_{ij}	k_{high}	k_{drop}	$p_{ij}^{(k_{drop})}$	$s(k_{drop})$	$\min \overline{V}_{\lambda_{k_{dron}}}$
(Nup133, Nup84)	0.571	16	16	1.00	1.00	0.76
(Nup145C, Nup84)	1.000	16	16	1.00	1.00	0.79
(Nup120, Seh1)	0.837	16	16	1.00	1.00	0.82
(Nup133, Nup145C)	0.589	16	16	1.00	1.00	0.83
(Nup120, Nup85)	0.569	16	16	1.00	1.00	0.88
(Nup85, Seh1)	1.000	11	16	0.83	1.21	2.30
(Nup84, Sec13)	0.66	10	14	0.79	1.26	2.63
(Nup145C, Sec13)	0.503	12	12	1.00	1.00	0.81
(Nup133, Sec13)	0.381	10	12	0.96	1.04	1.06
(Nup120, Sec13)	0.284	4	12	0.77	1.31	2.25
(Nup120, Nup84)	0.487	2	10	0.67	1.49	1.79
(Nup133, Nup85)	0.478	1	9	0.82	2.55	2.82
(Nup84, Seh1)	0.376	2	9	0.63	3.63	3.08
(Sec13, Seh1)	0.233	4	4	1.00	1.00	0.56
(Nup85, Sec13)	0.227	4	4	1.00	1.00	0.78
(Nup120, Nup133)	0.465	1	3	0.89	2.91	1.57
(Nup84, Nup85)	0.543	2	2	1.00	2.27	0.83
(Nup120, Nup145C)	0.498	1	2	0.95	1.86	1.16

・ロト ・ 一下・ ・ ヨト ・ ヨト

▶ Insights:

contact probabilities sharper than frequencies (Sali et al) 3/6 contacts from Blobel et al confirmed closure of the rings: Nup120 - Nup133 not prominent

Assessing a toleranced model w.r.t. a set of protein types

Y-complex : protein types

Y-complex : instance

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ の Q @ >

Assessment w.r.t. a Set of Protein Types: Geometry, Topology, Biochemistry

▶ Input:

- Toleranced model

-T: set of proteins types, the red proteins (TAP, types involved in sub-complex)

Output, overall assembly:

- Geometry - biochemistry:

number of isolated copies - symmetry analysis

TAP data: complex or mixture?

- Topological stability: death date - birth date (cf α -shape demo)

Output, per complex:

- Biochemistry: stoichiometry of protein instances per copy

- Geometry, volume ratio: volume occupied vs. expected volume

Assessing a toleranced model w.r.t a high-resolution structural model

Assembly Complex: skeleton graph Template: skeleton graph

(日) (同) (日) (日)

Assessment w.r.t. a High-resolution Structural Model: Contact Analysis

Input: two skeleton graphs

- template G_t , the red proteins : contacts within an atomic resolution model
- complex G_C : skeleton graph of a complex of a node of the Hasse diagram

▷ Output: graph comparison, complex G_C versus template G_t: (common/missing/extra) × (proteins/contacts)

Ref: Cazals, Karande; Theoretical Computer Science; 349 (3), 2005
Ref: Koch; Theoretical Computer Science; 250 (1-2), 2001

INSIGHTS ON THE NPC

ヘロト ヘアト ヘヨト ヘ

-

Key Facts on the Y-complex and the T-complex

Contacts analysis: 36 over-represented pairs

Analysis w.r.t. a set of protein types

Y-complex:

Poor positioning of Sec13

No isolation of copies of the Y-complex: contacts across copies prevail T-complex:

16 isolated copies found: contacts intra-copies prevail

Analysis w.r.t. a 3D template

Y-complex:

Support for Blobel's model: Y-complexes for two rings

Contact involved in closure; role of Nup85

T-complex:

Asymmetry of the interactions (Nic96,Nup49) [strong] (Nic96,Nic57) [weak] New 3D template for (Nic96,Nsp1,Nup49,Nup57)

The global model of Sali et al does convey precise information... when coupled to appropriate tools to probe it; in particular

Toleranced Models for Large Assemblies: Positioning

くしゃ 本面 アメヨア メヨア しゅうぐう

Methodology: modeling with uncertainties

- Toleranced models: continuum of shapes vs fixed shapes
- Topological and geometric stability assessment Curved α -shapes

Applications to toleranced complexes

- A-I. Contact probabilities (stoichiometry)
- A-II. Analysis of sub-complexes (symmetries, volume ratio)
- A-III. Contacts within sub-complexes (graphical models of sub-complexes)

Our Vision

Experiments and Modeling

Improved descriptions

Improved predictions

atomic models (small complexes)

coarse models (PPI networks)

Structure-to-Function

Oocking (and Folding)

Questions

- Modeling the flexibility of proteins
- Bridging the gap to systems biology

Partial answers from

- Geometric topological modeling stability analysis
- Graph theory matching algorithms
- Statistical testing
- Dimensionality reduction investigating correlations

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Sotware: Modeling Large Assemblies

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三日 - 釣A⊘

Sotware: Modeling Protein Interfaces

intervor: modeling protein - protein interfaces

http://cgal.inria.fr/abs/Intervor; Bioinformatics; 26 2010

vorpatch: topological encoding of binding patches

vorlume: certified molecular surfaces and volumes

http://cgal.inria.fr/abs/Vorlume; ACM Trans. Math Softw.; 2011

compatch: comparing binding patches

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Sotware: Misc

ESBTL: C++ template library data model / geometry

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

http://esbtl.sf.net; Bioinformatics 26; 2010

Computational Geometry Algorithms Library: 3D spherical kernel

http://www.cgal.org