Assessing the Reconstruction of Macro-molecular Assemblies: the Example of the Nuclear Pore Complex
F. Cazals, Algorithms - Biology - Structure, INRIA Sophia-Antipolis T. Dreyfus, Algorithms - Biology - Structure, INRIA Sophia-Antipolis V. Doye, Institut Jacques Monod, CNRS, Paris

SOPHIA-ANTIPOLIS-MÉDITERRANÉE

Reconstructing large protein assemblies Modeling with uncertainties: Toleranced Models Assessing the reconstruction of assemblies Mining contacts: Contact probabilities Mining complexes: stoichiometry, volume ratio Mining Complexes: Graphical models
Conclusion
Software of potential interest

Structural Dynamics of Macromolecular Processes

Reconstructing Large Macro-molecular Assemblies

\triangleright Difficulties

Modularity
Flexibility

Reconstruction / animation Integration of (various) experimental data Coherence model vs experimental data

```
\trianglerightRef: Russel et al, Current Opinion in Cell Biology, 2009
```


Reconstructing Large Assemblies: a NMR-like Data Integration Process

\triangleright Four ingredients

- Experimental data
- Model: collection of balls
- Scoring function: sum of restraints restraint : function measuring the agreement <model vs exp. data>

- Optimization method (simulated annealing,...)
\triangleright Restraints, experimental data and ... ambiguities:

Assembly	: shape	cryo-EM	fuzzy envelopes
Assembly	: symmetry	cryo-EM	idem
Complexes: : interactions	TAP (Y2H, overlay assays)	stoichiometry	
Instance:	: shape	Ultra-centrifugation	rough shape (ellipsoids)
Instances:	: locations	Immuno-EM	positional uncertainties

\triangleright Ref: Alber et al, Ann. Rev. Biochem. 2008 + Structure 2005

The Nuclear Pore Complex: Structure and Reconstruction

\triangleright NPC: overview

- Eight-fold axial + planar symmetry
- 456 protein instances of 30 protein types $(456=8 \times(28+29))$
\triangleright Reconstruction results: $N=1000$ optimized structures (balls):
(i) blending the balls of all the instances of one type over the N structures: one 3D probability density map per protein type
(ii) superimposing these maps provides a global fuzzy model \triangleright Qualitative results:

Our map is sufficient to determine the relative positions within NPC ...limited precision; not to be mistaken with the density map from EM The localization volumes ... allow a visual interpretation of proximities
\triangleright Ref: Alber et al; Nature; 450; 2007

NPC: Example Density Maps

Stoichiometry vs number of connected components
\triangleright Cases: equal (Nup157); larger (Sec13)

\triangleright Cases: smaller (Nup170, Pom152)

\triangleright Two types of problems:
number of connected components vs stoichiometry volume of each connected component vs. volume estimated from the sequence
\triangleright Ref: Alber et al; Nature; 450; 2007

Uncertainties of the Density Maps

- Volume of connected components of non empty voxels vs. reference volume (estimated from the sequence)

$$
\bar{V}\left(c c_{i}\right)=\operatorname{Vol}\left(c c_{i}\right) / \operatorname{Vol}_{r e f}(P), \text { for } i=1, \ldots, p .
$$

Statistics on connected components per density map

Putative Models of Sub-complexes: the Y-complex

\triangleright Symmetric core of the NPC

\triangleright Ref: Blobel et al; Cell; 2007
\triangleright The Y-complex: pairwise contacts

\triangleright Ref: Blobel et al; Nature SMB; 2009
\triangleright Y-based head-to-tail ring vs. upward-downward pointing

\triangleright Ref: Seo et al; PNAS; 2009
\triangleright Ref: Brohawn, Schwarz; Nature MSB; 2009
\Rightarrow Bridging The gap between both classes of models?

The Zoo of curved Voronoi diagrams

\triangleright Power diagram:
$d(S(c, r), p)=\|c-p\|^{2}-r^{2}$

\triangleright Apollonius diagram: $d(S(c, r), p)=\|c-p\|-r$

\triangleright Mobius diagram:

$$
d(S(c, \mu, \alpha), p)=\mu\|c-p\|^{2}-\alpha^{2}
$$

\triangleright Compoundly Weighted Voronoi diagram:
$d(S(c, \mu, \alpha), p)=\mu\|c-p\|-\alpha$

Prologue; I; II; III-A; III-B; III-c; Epilogue

> BUILDING TOLERANCED MODELS (EMBRACING THE GEOMETRIC NOISE.)

Uncertain Data and Toleranced Models: the Example of Molecular Probability Density Maps

\triangleright Probability Density Map of a Flexible Complex:

- Each point of the probability density map: probability of being covered by a conformation
\triangleright Question:
accommodating high/low density regions?
\triangleright Toleranced ball $\overline{S_{i}}$
- Two concentric balls of radius $r_{i}^{-}<r_{i}^{+}$: inner ball $\bar{S}_{i}\left[r_{i}^{-}\right]$: high confidence region outer ball $\overline{S_{i}}\left[r_{i}^{+}\right]$: low confidence region
\triangleright Space-filling diagram \mathcal{F}_{λ} : a continuum of models
- Radius interpolation: $r_{i}(\lambda)=r_{i}^{-}+\lambda\left(r_{i}^{+}-r_{i}^{-}\right)$
\triangleright Multiplicative weights required
\triangleright Ref: Cazals, Dreyfus; Symp. Geom. Processing; 2010

Toleranced Models for the NPC

\triangleright Input: 30 probability density maps from Sali et al.
\triangleright Output: 456 toleranced proteins
\triangleright Rationale:
\rightarrow assign protein instances to pronounced local maxima of the maps
\triangleright Geometry of instances:

- four canonical shapes
- controlling $r_{i}^{+}-r_{i}^{-}$: w.r.t volume estimated from the sequence

(i) Canonical shapes
(ii) NPC at $\lambda=0$
(iii) NPC at $\lambda=1$

Prologue; I; II; III-A; III-b; III-c; Epilogue

Growing toleranced models and ENUMERATING

THEIR FINITE SET OF TOPOLOGIES (Spotting Stable structures.)

VIDEO/ashape-two-cc-cycle-video.mpeg

Multi-scale Analysis of Toleranced Models: Finite Set of Topologies and Hasse Diagram

Skeleton graphs

\triangleright Red-blue bicolor setting: red proteins are types singled out (e.g. TAP)
\triangleright Complexes and skeleton graphs: Hasse diagram
\triangleright Finite set of topologies: encoded into a Hasse diagram

- Birth and death of a complex
- Topological stability of a complex $s(c)=\lambda_{d}(C)-\lambda_{b}(C)$
\triangleright Computation: via intersection of Voronoi restrictions

The Union-Find Algorithm

\triangleright How many clusters?
\triangleright The Union-Find algorithm Dynamic maintenance of the connected components (c.c.) of an evolving graph
\triangleright Three operations
Make_set
Find the leader of a c.c.
Union two components
\triangleright Complexity: almost linear $m \alpha(m, n)$
\triangleright Ref: R.E. Tarjan; Data Structures and Network Algorithms; 1983

On Intersecting Balls...

Computational Geometry

Curved voronoi diagrams
Certified numerics (algebraic numbers)

Algebraic topology
Homology calculations
Stability in toleranced models

Morse theory \begin{tabular}{c}
Persistence theory

Topological changes undergone
by level sets

\end{tabular} Stability of geometric/topological features

Prologue; I; II; III-A; III-b; III-c; Epilogue

Proeminent contact frequencies out of the $\binom{30}{2}+30=465$
PAIRS OF PROTEIN TYPES

- Contact frequency: fraction of the 1000 models with \geq one contact between instances of these types
- Freq. split into 3 classes, $a=0.25, b=0.65$: $F_{1}: f_{i j} \leq a ; F_{2}: a<f_{i j}<b ; F_{3}: b \leq f_{i j}$
- Limitations:
contact can be shallow
stoichiometry missing

Contact Probabilities versus Contact Probabilities

\triangleright Over-represented in Sali et al:
Nup84 - Nup60 : $f_{i j}=0.07$

\triangleright Under-represented in Sali et al:
Nup192 - Pom152: $f_{i j}=0.98$

\triangleright Contacts for two types p_{i} and p_{j}

- Consider: the Hasse diagram for $\lambda \in\left[0, \lambda_{\max }\right]$ a stoichiometry $k \geq 1$
- Define: $\lambda\left(p_{i}, p_{j}\right):$ smallest λ $\exists \mathrm{k}$ contacts between p_{i} and p_{j}
- Contact proba.: $p_{i j}^{(k)}=1-\lambda\left(p_{i}, p_{j}\right) / \lambda_{\max }$
- Contact curve: $p_{i j}^{(k)}=f(k)$

Note: $\lambda_{\text {max }}$ tuned to match the uncertainties on the input

Contact Curves: Insights on (models of) the Y-complex

C

Protein types	$f_{i j}$	$k_{\text {high }}$	$k_{\text {drop }}$	$p_{\left.k_{\text {drop }}\right)}^{\left(k_{\text {drap }}\right.}$	$s\left(k_{\text {drop }}\right)$	$\min \bar{V}_{\lambda_{k_{\text {drop }}}}$
(Nup133, Nup84)	0.571	16	16	1.00	1.00	0.76
(Nup145C, Nup84)	1.000	16	16	1.00	1.00	0.79
(Nup120, Seh1)	0.837	16	16	1.00	1.00	0.82
(Nup133, Nup145C)	0.589	16	16	1.00	1.00	0.83
(Nup120, Nup85)	0.569	16	16	1.00	1.00	0.88
(Nup85, Seh1)	1.000	11	16	0.83	1.21	2.30
(Nup84, Sec13)	0.66	10	14	0.79	1.26	2.63
(Nup145C, Sec13)	0.503	12	12	1.00	1.00	0.81
(Nup133, Sec13)	0.381	10	12	0.96	1.04	1.06
(Nup120, Sec13)	0.284	4	12	0.77	1.31	2.25
(Nup120, Nup84)	0.487	2	10	0.67	1.49	1.79
(Nup133, Nup85)		1	9	0.82	2.55	2.82
(Nup84, Seh1)	0.376	2	9	0.63	3.63	3.08
(Sec13, Seh1)	0.233	4	4	1.00	1.00	0.56
(Nup85, Sec13)	0.227	4	4	1.00	1.00	0.78
(Nup120, Nup133)	0.465	1	3	0.89	2.91	1.57
(Nup84, Nup85)	0.543	2	2	1.00	2.27	0.83
(Nup120, Nup145C)	0.498	1	2	0.95	1.86	1.16

\triangleright Insights:
contact probabilities sharper than frequencies (Sali et al)
3/6 contacts from Blobel et al confirmed
closure of the rings: Nup120 - Nup133 not prominent

Prologue; I; II; III-A; III-B; III-c; Epilogue

Assessing a toleranced model W.R.T. A SET OF PROTEIN TYPES

Sec13

Y-complex: instance

Assessment w.r.t. a Set of Protein Types: Geometry, Topology, Biochemistry

\triangleright Input:

- Toleranced model
- T : set of proteins types, the red proteins (TAP, types involved in sub-complex) \triangleright Output, overall assembly:
- Geometry - biochemistry:
number of isolated copies - symmetry analysis
TAP data: complex or mixture?
- Topological stability: death date - birth date (cf α-shape demo)
\triangleright Output, per complex:
- Biochemistry: stoichiometry of protein instances per copy
- Geometry, volume ratio: volume occupied vs. expected volume

Prologue; I; II; III-A; III-b; III-c; Epilogue

Assessing a toleranced model w.r.t
A HIGH-RESOLUTION STRUCTURAL MODEL

Assembly
Complex: skeleton graph Template: skeleton graph

Assessment w.r.t. a High-resolution Structural Model: Contact Analysis

- Input: two skeleton graphs
- template G_{t}, the red proteins : contacts within an atomic resolution model
- complex G_{C} : skeleton graph of a complex of a node of the Hasse diagram
\triangleright Output: graph comparison, complex G_{C} versus template G_{t} : (common/missing/extra) \times (proteins/contacts)

\triangleright Ref: Cazals, Karande; Theoretical Computer Science; 349 (3), 2005
\triangleright Ref: Koch; Theoretical Computer Science; 250 (1-2), 2001

Prologue; I; II; III-a; III-b; III-c; Epilogue

Insights on the NPC

Y-complex
T-complex

Key Facts on the Y-complex and the T-complex

\triangleright Contacts analysis: 36 over-represented pairs
\triangleright Analysis w.r.t. a set of protein types
Y-complex:
Poor positioning of Sec13
No isolation of copies of the Y-complex: contacts across copies prevail T-complex:

16 isolated copies found: contacts intra-copies prevail
\triangleright Analysis w.r.t. a 3D template
Y-complex:
Support for Blobel's model: Y-complexes for two rings
Contact involved in closure; role of Nup85
T-complex:
Asymmetry of the interactions (Nic96,Nup49) [strong] (Nic96,Nic57) [weak] New 3D template for (Nic96,Nsp1,Nup49,Nup57)
\triangleright The global model of Sali et al does convey precise information...
when coupled to appropriate tools to probe it; in particular

Toleranced Models for Large Assemblies: Positioning

\triangleright Methodology: modeling with uncertainties

- Toleranced models: continuum of shapes vs fixed shapes
- Topological and geometric stability assessment

Curved α-shapes
\triangleright Applications to toleranced complexes

- A-I. Contact probabilities (stoichiometry)
- A-II. Analysis of sub-complexes (symmetries, volume ratio)
- A-III. Contacts within sub-complexes (graphical models of sub-complexes)

Our Vision

\triangleright Experiments and Modeling

Structure-to-Function

- Improved descriptions
- Improved predictions
- atomic models (small complexes) - coarse models (PPI networks)

Docking (and Folding)

Sotware: Modeling Large Assemblies

Sotware: Modeling Protein Interfaces

\triangleright intervor: modeling protein - protein interfaces

http://cgal.inria.fr/abs/Intervor;
Bioinformatics; 262010
\triangleright vorpatch: topological encoding of binding patches

\triangleright vorlume: certified molecular surfaces and volumes

http://cgal.inria.fr/abs/Vorlume; ACM Trans. Math Softw.; 2011
\triangleright compatch: comparing binding patches

Sotware: Misc

\triangleright Geomsel:
selection of diverse conformers

ACM Trans. CBB; 2011
\triangleright ESBTL: C++ template library data model / geometry

http://esbtl.sf.net;
Bioinformatics 26; 2010
\triangleright Computational Geometry Algorithms Library: 3D spherical kernel
http://www.cgal.org

