Virtual Machine Migration

Pierre Riteau

University of Rennes 1, IRISA Inria Rennes - Bretagne Atlantique

October 21, 2011 Journée Cloud France Grilles, Lyon

< 口 > < 同

Outline

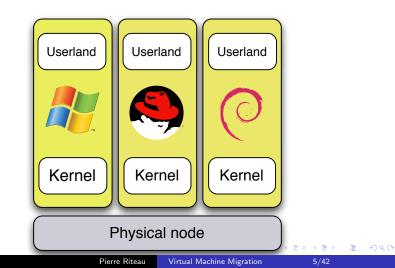
- 2 Migration
 - Pure stop-and-copy
 - Live Migration
 - Use Cases
- 3 Live Migration Techniques
- 4 Live Migration in WANs
- **5** Live Migration Optimizations

6 Conclusion

Hardware Virtualization

Migration Live Migration Techniques Live Migration in WANs Live Migration Optimizations Conclusion

Outline


Hardware Virtualization

- Presents a computer similar to a real physical one
- With CPU(s), memory, disk(s), network interface(s), etc.
- The virtual machine runs a full OS
- Full Virtualization vs Paravirtualization
- Hypervisors: VMware, Xen, KVM, etc.
- Virtual machines provide complete encapsulation of
 - Applications
 - Libraries
 - Operating system

Hardware Virtualization

Migration Live Migration Techniques Live Migration in WANs Live Migration Optimizations Conclusion

Hardware Virtualization

Pure stop-and-copy Live Migration Use Cases

Outline

- 2 Migration
 - Pure stop-and-copy
 - Live Migration
 - Use Cases
- 3 Live Migration Techniques
- 4 Live Migration in WANs
- 5 Live Migration Optimizations
- 6 Conclusion

< ≣ 6/42

Pure stop-and-copy Live Migration Use Cases

Migration

- Relocate VM from one physical host to another
- \bullet Complete encapsulation \rightarrow no OS support needed
- Transfer VM state over the network
 - Processor state (CPU registers)
 - Hardware devices state (hardware registers)
 - Memory content
 - (Possibly disk content)

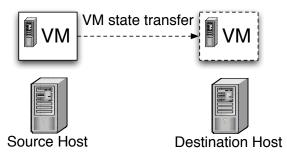
Pure stop-and-copy Live Migration Use Cases

Pure stop-and-copy

- Simplest approach
- Suspend source VM on source host
- Copy all VM state over the network
- Resume source VM on destination host
- Used by the Internet Suspend/Resume project

Pure stop-and-copy Live Migration Use Cases

Pure stop-and-copy



<ロ> (日) (日) (日) (日) (日)

æ

Pure stop-and-copy Live Migration Use Cases

Pure stop-and-copy

Pierre Riteau Virtual Machine Migration

10/42

э

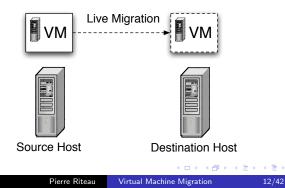
E ► < E ►

< □ > < 同 >

Pure stop-and-copy Live Migration Use Cases

Pure stop-and-copy

<ロ> <同> <同> < 同> < 同>


11/42

æ

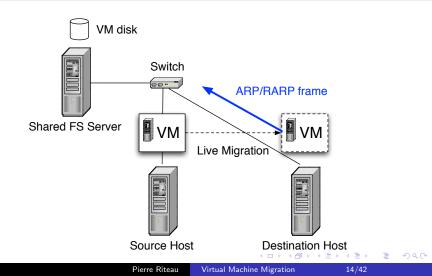
Live Migration

Live Migration of Virtual Machines

- Problem with pure stop-and-copy: long downtime
- Live migration
 - Minimize downtime (milliseconds)
 - Works by transferring state during execution

12/42

Pure stop-and-copy Live Migration Use Cases


Live Migration of VMs in LANs

- Live migration initially proposed for LANs
- Clark et al., NSDI '05 & Nelson et al., USENIX '05
- Transfer from source host to destination host of the same LAN
- What about storage and network resources?
- \bullet Shared storage (e.g. NFS) \rightarrow no migration needed
- Network traffic redirected with gratuitous ARP/RARP frames

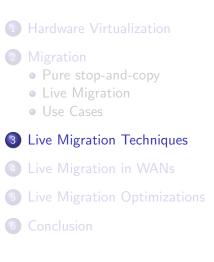
< □ > < 同 >

Pure stop-and-copy Live Migration Use Cases

Live Migration of Virtual Machines

Pure stop-and-copy Live Migration Use Cases

Use Cases


- Offers many advantages
- Load balancing / Reduced energy consumption
 - Migrate VMs in case of hotspots (c.f. Adrien Lèbre's talk)
 - Consolidate VMs on a subset of nodes
 - Turn off unused physical nodes
 - Entropy (Ecole des Mines de Nantes)
- Transparent infrastructure maintenance
- Pro-active fault tolerance
 - Detect future faults from hardware events
 - Preemptively migrate on another node
 - Nagarajan et al., SC 07

< 口 > < 同 >

15/42

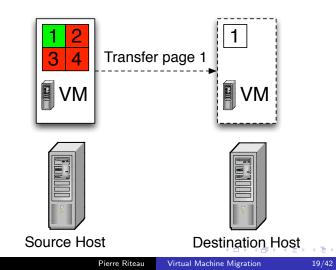
∃ ► < ∃ ►</p>

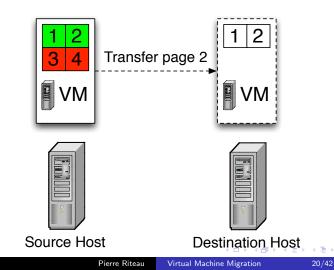
Outline

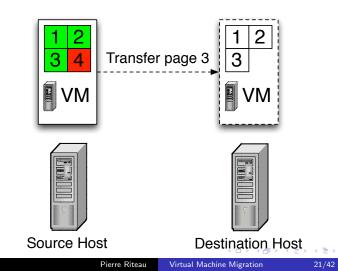
Pre-Copy Live Migration

- Traditional method used for migration of processes
- Iterative process
 - Copy all memory content to the destination host (while the VM continues running)
 - Do multiples iterations to copy modified memory pages during the previous period
 - When enough iterations have been done, stop the VM and
 - Copy the remaining modified memory pages
 - Copy the CPU and device state
 - Resume VM on destination host
- Method implemented by all production hypervisors

Pre-Copy Live Migration

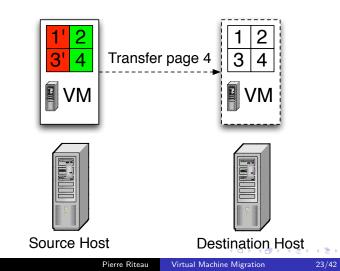


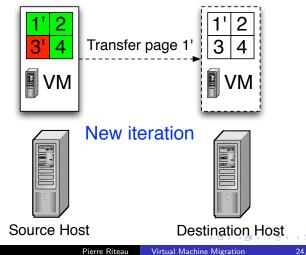

Destination Host


Pierre Riteau

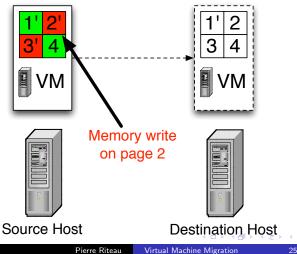
Virtual Machine Migration


■18/42

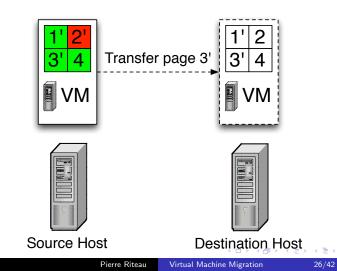



Pre-Copy Live Migration

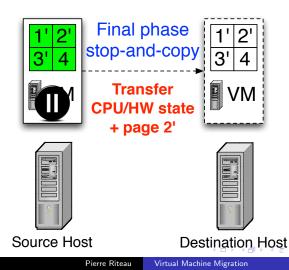
22/42



Pre-Copy Live Migration



24/42


Pre-Copy Live Migration

25/42

Pre-Copy Live Migration

27/42

Pre-Copy Live Migration

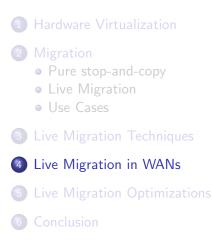
Pierre Riteau

Virtual Machine Migration

≥28/42

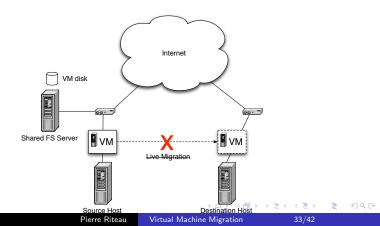
Stop-and-copy phase

- Different behavior between Xen and KVM
- Xen: threshold values
 - Remaining pages under a threshold
 - OR Too many iterations
 - OR Too much data transferred
- KVM: estimated downtime
 - Administrator can specify maximum downtime
 - Default: 30 milliseconds
 - KVM estimates available bandwidth
 - $\bullet\,$ Stops only when estimated downtime < maximum downtime
- Xen forces convergences of migration
- KVM trusts the admistrator or VM management software


Post-Copy Live Migration

- Pre-copy can present long downtime in the last phase
 - if the application modifies a large working set
 - if the available bandwidth is low
- Post-copy algorithm
 - Start by copying CPU and device state
 - Resume VM execution on the destination host
 - Fetch memory on demand when accessed
- Reduces downtime over pre-copy
- Can lower performance because of memory access latency
- KVM implementation: Takahiro Hirofuchi & Isaku Yamahata

Trace & Replay Live Migration

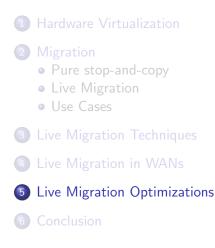

- Use pre-copy as the basic migration algorithm
- \bullet Instead of sending modified memory pages \to send external events of the VM to replay the modifications
- Example: network packet received
 - Log event and transfer to destination
 - Replay result of event on destination
- Greatly reduces amount of data to send between hosts
- Problem with SMP VMs as CPU synchronization would be too costly
- Liu et al., HPDC 2009

Outline

Live Migration over Wide Area Networks

• Live migration between different infrastructures/data centers/clouds

Live Migration of Storage


- Need to replicate data to the destination infrastructure
- Like memory migration, several algorithms exist
- Copy whole disk content + iteratively synchronize changes
 - KVM storage migration since 0.12
 - Developed by IBM in the RESERVOIR project [Nagin et al., SYSTOR 2011]
- Mirror writes to destination node
 - DRBD
 - Latest VMware ESX
- On-demand data fetching from destination
 - Hirofuchi et al., CCGrid 2009
 - KVM work-in-progress on image streaming (QED format)

4) Q (?

Network Support for Live Migration

- Not possible to redirect traffic with ARP/RARP frames between different IP networks
- Various types of solutions
- Layer 2 VPNs
- Virtual networks based on reconfigurable overlays
- Mobile IP protocol
 - Home agent in the source network
 - Forwards to the foreign network of the mobile VM

Outline

36/42

Live Migration Optimizations

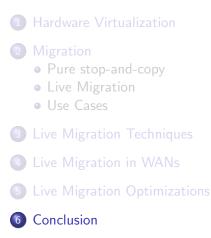
- Metrics to minimize
 - Total data transferred
 - Downtime
 - Total migration time
- Several approaches
 - Data Compression
 - Page Delta Transfer
 - Data Deduplication

Data Compression

- Compress memory pages sent over the network
- $\bullet~\mbox{Compress zero'd memory pages} \to \mbox{available in KVM}$
 - Interesting for migration of Windows
- Use a compression algorithm (gzip, bzip2, lzo)
 - \rightarrow KVM supports piping VM state to any executable
- Adaptive memory compression [Jin:2009]

∃ → < ∃ →</p>

Page Delta Transfer


- Memory pages are 4 KB on x86
- $\bullet\,$ Modify 1 byte in the page \rightarrow transfer 4 KB
- Delta transfer mechanism:
 - Keep copy of original page
 - Computer differences between original and new page
 - Send diff instead of full content
- Xor Binary Zero Run-Length-Encoding for KVM from SAP
 ⇒ Live migration of large memory apps
- Discussion about support for KVM migration plugins

∃ ► < ∃ ►</p>

Data Deduplication

- VMs can contain identical data in multiple memory pages
- Remove duplicated memory pages
- Fast hash algorithm + full data comparison when match
 - Single-VM [Wood et al., VEE 2011]
 - Multi-VM on same host [Deshpande et al., HPDC 2011]
- Distributed approach for Multi-VM Multi-host [Riteau et al., Euro-Par 2011]

Outline

Conclusion

- Live migration still a hot topic of research
- Hypervisors start to include some advanced features
 - Storage migration
 - Optimizations
- Xen used to be the choice for hypervisor research
- Now KVM has a more dynamic community
- Ongoing & future research
 - Further live migration performance improvements
 - Especially in distributed systems & WANs
- Higher levels using live migration
 - \rightarrow Autonomous infrastructure management