Phenomenological Aspects of Supersymmetric Dark Matter

Dark Matter in variations of constrained MSSM models: A comparison between accelerator and direct detection constraints

- CMSSM
- mSUGRA
- Sub-GUT
- NUHM
- A hint of Higgs?

with: Ellis, Hahn, Heinemeyer, Sandick, Santoso, Savage, Spanos, Weber, Weiglein

Evidence for Dark Matter

How Much Dark Matter

WMAP 3

Spergel etal

Precise bounds on matter content

 $\Omega_{\rm m}h^2 = 0.1265_{-0.0080}^{+0.0081}$ $\Omega_{\rm b}h^2 = 0.0223 \pm 0.0007$

 $\Omega_{cdm}h^2 = 0.1042_{-0.0080}^{+0.0081}$ or $\Omega_{cdm}h^2 = 0.0882 - 0.1204 \quad (2 \sigma)$ Guage Hierarchy Problem $M_P \approx 10^{19}$ GeV $M_X \approx 10^{15}$ GeV $M_W \approx 10^2$ GeV

Scalar masses corrected by loops

Running of the Gauge couplings in the standard model

Running of the Gauge couplings in the supersymmetric standard model

What is the MSSM

1) Add minimal number of new particles: Partners for all SM particles + 1 extra Higgs EW doublet.

2) Add minimal number of new interactions: Impose R-parity to eliminate many UNWANTED interactions.

 $R = (-1)^{3B+L+2S}$

Particle Content of the MSSM

SUSY Dark Matter

MSSM and R-Parity

Stable DM candidate

1) Neutralinos

 $\chi_i = lpha_i \widetilde{B} + eta_i \widetilde{W} + \gamma_i \widetilde{H}_1 + \delta_i \widetilde{H}_2$

2) Sneutrino

Excluded (unless add L-violating terms)

3) Other: Axinos, Gravitinos, etc

Parameters

Higgs mixing mass: μ Ratio of Higgs vevs: tan β Gaugino masses: M_i Soft scalar masses: m_0

Bi and Trilinear Terms: B and A_i Phases: θ_{μ} , θ_{A}

The Relic Density

At high temperatures $T \gg m\chi$; χ 's in equilibrium $\Gamma > H$ $n\chi \sim n\gamma$ $\Gamma \sim n\sigma v \sim T^3 \sigma v$; $HM_p \sim \sqrt{\rho} \sim T^2$ As $T < m\chi$; annihilations drop $n\chi$

$$n\chi \sim e^{-m\chi/T} n\gamma$$

Until freeze-out, $\Gamma < H$

 $n\chi/n\gamma \sim constant$

Direct Detection

• Elastic scattering cross sections for χp

Dominant contribution to spin-independent scattering

$$\mathcal{L} = \alpha_{3i} \bar{\chi} \chi \bar{q}_i q_i,$$

Through light squark exchange – Dominant for binos Through Higgs exchange – Requires some Higgsino component

Uncertainties from hadronic matrix elements

The scalar cross section

$$\sigma_3 = \frac{4m_r^2}{\pi} \left[Zf_p + (A - Z)f_n \right]^2$$

where

$$\frac{f_p}{m_p} = \sum_{q=u,d,s} f_{Tq}^{(p)} \frac{\alpha_{3q}}{m_q} + \frac{2}{27} f_{TG}^{(p)} \sum_{c,b,t} \frac{\alpha_{3q}}{m_q}$$

and

$$m_p f_{Tq}^{(p)} \equiv \langle p | m_q \bar{q} q | p \rangle \equiv m_q B_q$$

determined by
$$\sigma_{\pi N} \equiv \Sigma = \frac{1}{2}(m_u + m_d)(B_u + B_d)$$

The strangeness contribution to the proton mass

$$y = \frac{2B_s}{B_u + B_d} = \frac{(m_u + m_d) \langle p | s\bar{s} | p \rangle}{\Sigma}$$
$$= 1 - \frac{\sigma_0}{\Sigma} \qquad \sigma_0 = 36 \pm 7 \text{ MeV}$$

For $\Sigma = 45$ MeV, y = 0.2 $f_{T_u} = 0.020$ $f_{T_d} = 0.026$ $f_{T_s} = 0.117$ For $\Sigma = 64$ MeV, y = 0.44 $f_{T_u} = 0.027$ $f_{T_d} = 0.039$ $f_{T_s} = 0.363$ For $\Sigma = 36$ MeV, y = 0

 $f_{T_u} = 0.016$ $f_{T_d} = 0.020$ $f_{T_s} = 0.$

Constraints

• Chargino mass limit

$$\label{eq:m_constraint} \begin{split} M_{\chi^{\pm}} &\geq 104 ~GeV \\ Constraints (M_2 ~and ~\mu)/~m_{1/2} \end{split}$$

• Higgs mass limit

$$\begin{split} M_{H} &\geq 114 \text{ GeV} \\ \text{Constrains } (m_{A}, M_{2}, A) / m_{1/2} \\ \text{particularly at low tan } \beta \end{split}$$

• b to s γ

Constrains (m_A)/ m_{1/2} at high tan β and $\mu < 0$

• Also sfermion mass limits from LEP and CDF

 $m_f \ge 99 \text{ GeV} \text{ (roughly)}$

 χ is the LSP

Unification Conditions

- Gaugino masses: $M_i = m_{1/2}$
- Scalar masses: $m_i = m_0$

predict µ, B

• Trilinear terms: $A_i = A_0$

mSugra Conditions

- Gaugino masses: $m_{3/2} = m_0$
- Bilinear term: $B_0 = A_0 m_0$

predict μ , tan β

CMSSM Spectra

Unification to rich spectrum + EWSB

Typical Regions

CMSSM

Focus Point Region

As m₀ gets very large, RGE's force μ to 0, allowing neutralino to become Higgsino like with an acceptable relic density.

Feng Matchev Moroi Wilczek

Foliation in tan β

Indirect Sensitivities

- M_W
- $\sin^2 \theta$
- Γ_Z
- (g-2)_µ
- BR($b \rightarrow s \gamma$)
- BR($B_u \rightarrow \tau \nu_{\tau}$)

$$\chi^2 \equiv \sum_{n=1}^4 \left(\frac{R_n^{\text{exp}} - R_n^{\text{theo}}}{\sigma_n}\right)^2 + \chi^2_{M_h}$$

- ΔM_{B_s}
- **M**_h
- BR($B_s \rightarrow \mu^+ \mu^-$)

Ellis, Heinemeyer, Olive, Weber, Weiglein

Sensitivity to M_W and $\sin^2 \theta_W$

Ellis, Heinemeyer, Olive, Weber, Weiglein

Sensitivity to M_h and g-2

Ellis, Heinemeyer, Olive, Weber, Weiglein

Sensitivity to $b \rightarrow s \gamma$ and $B \rightarrow \mu \mu$

Indirect Sensitivities to CMSSM models

EHOWW

Direct Detection in the CMSSM

Ellis, Olive, Savage

Direct Detection in the CMSSM

EOSS

Sub-GUT models

Why assume that the supersymmetry breaking scale is M_{GUT} ?

- Flavor-blind supersymmetry breaking → universality but at what scale?
- Gauge coupling unification maintained (at the GUT scale)
- Gaugino and scalar masses unified at some scale $M_{in} < M_{GUT}$

Ellis, Olive, Sandick

S ≥ 10 and S/√B > 5 2-lepton channel: opp Fast simulation. Generator-level syster

2000-

m₀ (GeV)

100

2000

m₀ (GeV)

100

mSugra models

- $\tan \beta$ fixed by boundary conditions (B₀ = A₀ m₀)
- ``planes'' determined by A₀/m₀
- Gravitino often the LSP $(m_{3/2} = m_0)$
- No Funnels
- No Focus Point

The Very CMSSM (mSUGRA):

• Add $B_0 = A_0 - m_0$: Select tan β

Ellis, Olive, Santoso, Spanos

Cyburt, Ellis, Fields, KO, Spanos

Effects of Bound States

- In SUSY models with a $\widetilde{\tau}$ NLSP, bound states form between ⁴He and $\widetilde{\tau}$
- •The ⁴He (D, γ) ⁶Li reaction is normally highly suppressed (production of low energy γ)
- •Bound state reaction is not suppressed

Cyburt, Ellis, Fields, KO, Spanos

Cyburt, Ellis, Fields, KO, Spanos

Direct Detection of NDM in the mSugra models

NUHM

- Drop unification of scalar masses
- All Higgs soft masses, m₁ and m₂, to be chosen independently of m₀
- Allows μ and m_A to be free parameters

The $m_0 - m_{1/2}$ plane

+ CMSSM value

Ellis, Falk, Olive, Santoso

The $m_A - \mu$ plane

+ CMSSM value

Ellis, Olive, Santoso, Spanos

The $m_A - \mu$ plane

+ CMSSM value

Ellis, Olive, Santoso

CDM-consistent M_A -tan β planes

Ellis, Hahn, Heinemeyer, Olive, Weiglein

Direct Detection in the NUHM

EOSS

Hint of Higgs?

Not possible in CMSSM (light Higgs) but barely possible in NUHM

EHOW

Higgs Production/Detection

- Dominant Production Mode: gluon or b \overline{b} fusion
- Dominant Detection Channel: b b or $\tau^+ \tau^ \tau^+ \tau^-$ cleaner signal

CDF Search for $H \rightarrow \tau^+ \tau^ \tau \rightarrow e\nu_e \nu_{\tau}, \tau \rightarrow \mu \nu_{\mu} \nu_{\tau}, \text{ and } \tau \rightarrow hadrons \nu_{\tau}$

Enhanced by $\tan^2 \beta / ((1 + \Delta_b)^2 + 9)$ relative to SM

Background

source	$ au_e au_{had}$	$ au_{\mu} au_{had}$	$ au_e au_\mu$
$Z \to \tau \tau$	793.0 ± 4.7	796.6 ± 4.6	312.4 ± 2.9
$Z \rightarrow ee, \mu\mu$	68.3 ± 1.9	63.2 ± 1.8	11.9 ± 0.8
di-boson events	1.5 ± 0.02	1.2 ± 0.02	6.1 ± 0.1
$tar{t}$	1.3 ± 0.03	1.1 ± 0.03	4.7 ± 0.07
jet fakes	331.7 ± 18.2	139.4 ± 11.4	33.5 ± 3.2
Sum BG	1195.9 ± 18.9	1001.5 ± 12.5	368.6 ± 4.4
DATA	1215	1000	374

Observed limit is weaker than expected due to observed excess of events in the sample.

Can this be accounted for in Supersymmetry

CMSSM?

NUHM?

CMSSM

$M_A \sim 160 \text{ GeV} \Rightarrow \text{low } m_{1/2}$

NUHM

- BR(b → s γ) 2 main contributions -H[±] and χ[±] exchange
- Light Higgs $A \Rightarrow$ Light $H^{\pm} \Rightarrow$ Light $\chi^{\pm} \Rightarrow$

Low $m_{1/2}$

- \Rightarrow Light h, non-negligible g-2
- Relic density selects μ
- Large tan β + BR($B_s \rightarrow \mu^+ \mu^-$) selects A_0

NUHM Planes

EHOW

EHOW

What's left?

 $(m_{1/2}, m_0)$ in the range (500,1400), (700,700), (800,900)

 $\mu \sim 400 \text{ GeV}$

 $A_0 \sim -1600 - -2400 \text{ GeV}$

Hint of Higgs?

- Small M_A and large tan β possible but very constrained in the NUHM (not possible in the CMSSM)
- BR($B_s \rightarrow \mu^+ \mu^-$) should be detected soon
- M_h close to LEP limit
- BR($b \rightarrow s \gamma$) should show deviations from SM
- g-2 discrepancy should be slightly less
- BR($B_u \rightarrow \tau v_\tau$) at 1/3 SM value
- Dark Matter should be detected by CDMS and XENON10

- mSugra models most difficult to access experimental esp. if GDM
- Good indication from indirect sensitivities for `low' energy signal for SUSY.
- Good prospect for Direct detection and B→ µ⁺ µ⁻ particularly in non CMSSM models (unless GDM)

Ellis, Olive, Santoso, Spanos

The Very CMSSM:

What do we expect?

Gaugino masses

$$M_a(Q) = \frac{\alpha_a(Q)}{\alpha_a(M_{in})} m_{1/2}$$

Scalar masses

$$m_{0_i}^2(Q) = m_0^2(M_{in}) + C_i(Q, M_{in})m_{1/2}^2$$

What do we expect?

Gaugino masses

$$M_a(Q) = \frac{\alpha_a(Q)}{\alpha_a(M_{in})} m_{1/2}$$

Scalar masses

$$m_{0_i}^2(Q) = m_0^2(M_{in}) + C_i(Q, M_{in})m_{1/2}^2$$

The μ parameter

$$\mu^2 = \frac{m_1^2 - m_2^2 \tan^2 \beta}{\tan^2 \beta - 1} - \frac{M_Z^2}{2},$$

 $(m_{1/2},m_0) = (700,1000) \text{ GeV}$