
ROOT and Federated Data
Stores
What Features We Would Like

Fons Rademakers
CERN

CC-IN2P3, 21-22 Nov, 2011, Lyon, France.

Outline
• Optimizing WAN file access
• Local caching
• To Merge or not to merge
• Conclusions

3

• Typical HEP analysis needs a continuous algorithm
refinement cycle

• Ranging from I/O bound to CPU bound
• The faster the network the higher the I/O rate
• The lower the network latency the higher the I/O rate
• The more disks the higher the I/O rate
• The more RAM the more can be cached
• The more CPUs the faster the processing

HEP Data Analysis

Run over data set Make
improvements

Implement
algorithm

4

ROOT Optimizations for WAN
• Load phase (where data is fetched from an SE into the

TreeCache) is
■ Short for LAN transfers
■ Significant for WAN transfers (latency, bandwidth)

• Gain in WAN by asynchronous (double buffering) transfer
technique
■ Independent of access protocol (xrootd, httpd, etc)

• In addition local file caching
• And site proxy server

• Implemented in v5 30 by Elvin Alin Sindrilaru (fellow IT-

5

Tree Processing is Synchronous

TreeCache
30M

Serv
er

Load Proces
s

Serv
er

Load
time

Asynchronous Pre-Fetching
Serv

er

Load Process

Serv
er

Load

TreeCache
30M

Serv
er

time

7

Caching of TreeCache Blocks

TreeCache
30M

Serv
er

Loa
d

Store on Disk
Cache

TreeCache block named
with MD5[offset,len]

1st
executio

n

2nd
execution

TreeCach
e

30M

Load from Disk
Cache

tim
e time

8

Test Results (reading an 1 GB ATLAS AOD file over http)

synchrono
us

asynchrono
us

asynchronous from
cache

Client Server

9s IO + 60s
processing

60s
processin

g
IO parallel

LAN

WAN

Server@CERN

Server@BNL

13%
GAIN

25%
GAIN

synchronou
s

asynchronou
s

asynchronous from
cache

Client Server

352s IO + 60s
processing

258s IO wait* +
60s processing

IO parallel

* although the IO is asynchronous we are limited by the available
bandwidth

2
1

1 2 3

1 2 3

2
1

3

3

9

Pre-fetching and Caching Summary
• Asynchronous pre-fetching has been demonstrated as an

efficient way to improve the cpu/RT efficiency of analysis
applications
■ Allows to use every synchronous protocol in asynchronous

mode
■ Allows to proxy caching of TreeCache blocks on any ROOT

supported file storage
■ TreeCache transforms sparse/random access into sequential

local access

■ Integrated in ROOT v5.30, activated using rootrc flag:
■ TFile.AsyncPrefetching: yes

10

To Merge or not to Merge
• Output of Grid jobs and PROOF workers are naturally

nicely split
• Ideal situation for input to next distributed analysis
• Why merge

■ Combine objects, like histograms (but not needed for trees)
■ Export
■ Simplify file management

• Why not to merge
■ Output of Grid jobs and PROOF workers are naturally nicely

split
■ Good situation for input to next distributed analysis
■ Lazy merging (merge histogram only when being accessed)

11

Merging Large Outputs
• Large or non-optimized outputs may have dramatic effects

■ Memory explosion
■ Destroy the parallelization gains during merging

■ Many 3D histograms or 10000’s of 1D histograms

• PROOF solution
■ Save outputs on files on worker nodes and

■ Automatically run a merging application (TFileMerger or your
own)

■ Automatically create a dataset for further processing

■ Parallel merge: fastest workers act as sub-mergers

Theoretical speedup: √Nwrk

Available from ROOT 5.26

12

Faster Parallel Merge
• Current bottleneck in merging large number of files:

■ Write to local disk on all slaves
■ Server reads remote files on workers and writes one single

file

• This completely serializes the operation and wastes time
and resources

13

Faster Parallel Merge Solution
• Completely avoid the writing on disk of the intermediary

files
• Start uploading and merging of the resulting data as soon

as possible
• Using a special TFile implementation

■ Write only to memory
■ Whenever the TTree is AutoFlushed, upload the data to the

server

• Server will then:
■ Receive in parallel the data from the slaves and stages it in

memory
■ Use the ‘fast merging’ technique to merge directly from the in-

memory file to the final file without uncompressing or un-
streaming the data stored in a TTree

14

Faster Parallel Merge Advantages
• Minimal number of I/O operations:

■ Slaves write data only to memory
■ Slaves upload data once via TSocket
■ Server writes data only once to server disk

• Merge starts as soon as a minimal (30Mb) amount of data
has been accumulated by one slave

• I/O concurrent with processing
• Transparent to user code on slave

■ The special TFile, after creation, is used as any other TFile
■ Objects in the TFile are automatically Reset and Merged,

avoiding data duplication (however only classes with a Merge
and a ResetAfterMerge functions are supported)

15

Not Merging - File Set Support
• The many produced files belong to one logical single file

set
• Currently several experiment and ROOT specific solutions

■ TFileCollection
■ PQ2
■ Independent of storage system

■ Storage system does not know which files belong to a file set

• Would like to see file set support in xrootd
■ Copying a file set will copy all its members
■ Deleting a file set will delete all its members
■ Migrating a file set will migrate all its members
■ Exporting a file set will export all its member

16

ROOT Support for Exported File Sets
• On export of a file set Xrootd just concatenates the

member files
• ROOT support for concatenated ROOT files

■ TMultiFile
■ Trees in a TMultiFile are just TChain’ed
■ Objects can be merged on-the-fly
■ TMultiFile can be passed to TFileMerger for merging of all

objects

Conclusions
• ROOT is mostly “on top” of Federated Data Stores
• We try to make access to remote files as efficient as

possible
• File set support on the data store level would be welcome

	ROOT and Federated Data Stores�What Features We Would Like
	Outline
	HEP Data Analysis
	ROOT Optimizations for WAN
	Tree Processing is Synchronous
	Asynchronous Pre-Fetching
	Caching of TreeCache Blocks
	Test Results (reading an 1 GB ATLAS AOD file over http)
	Pre-fetching and Caching Summary
	To Merge or not to Merge
	Merging Large Outputs
	Faster Parallel Merge
	Faster Parallel Merge Solution
	Faster Parallel Merge Advantages
	Not Merging - File Set Support
	ROOT Support for Exported File Sets
	Conclusions

