ATLAS T1/T2 Name Space Issue with Federated Storage Hironori Ito Brookhaven National Laboratory ## Global name space - Federated storage - Universal access to all available storages - Protocol - Xrootd, http, etc... - Name space - File name itself should uniquely determine the location of the file in the storage system. ## GUID, physical file path in storage and logical file path in LFC - GUID of a file is the unique identifier. - Unique key in LFC, eg. lcg-la guid:XYZ - It maps to a particular path in LFC name space. - /grid/atlas/dq2/mc10_7TeV/NTUP_TOP/e737_s933_s946_r2 215_r2260_p542/mc10_7TeV.107670.AlpgenJimmyZtautauN p0_pt20.merge.NTUP_TOP.e737_s933_s946_r2215_r2260_p 542_tid326436_00/NTUP_TOP.326436._000527.root.1 - One guid/lfc path can have multiple physical files. - In the different SEs - In the same SE in different physical paths ## Physical file path - ATLAS physical file - No Global name space of physical files - Various space tokens in a single SRM end point - Identical files could be located at various SURL paths - Use of _sub by Panda system - Use of DQ2_XYZ extensions - » Caused by the lack of "re-name" in SRM protocol. - SRM should do this internally! - Essential for the tape area since the external rename is a bit tricky - » Without its use, due to asynchronous nature of write and delete, legitimate files could be deleted after the successful transfers (particularly after a few failed transfers) - Really painful to clean. #### Logical file path - ATLAS logical file - Logical file path in LFC is generally universal - No _DQ2_XZY extension unlike physical file - No storage dependent prefix or suffix - Does not depend on the space tokens. - Does not depend on the storage service name - » srm/managerv2 - » srm/v2/server - Almost deterministic based on the dataset name. - It is the closest thing to be the global name space - Still has _sub directories at T1s - Still has some site dependence on the site configuration - Eg - » User datasets locations are defined in PANDA schedule configuration, which are different for each sites. ## Not quite unique LFC path - Example of dataset name and file - DSN: mc10_7TeV.107670.AlpgenJimmyZtautauNp0_pt20.merge.NTUP_TOP.e737_s9 33 s946 r2215 r2260 p542 tid326436 00 - File name NTUP_TOP.326436._000527.root.1 - Should be located in LFC as /grid/atlas/dq2/mc10_7TeV/NTUP_TOP/e737_s933_s946_r2215_r2260_p542/ NTUP_TOP.326436._000527.root.1 - Could be located at one of many /grid/atlas/dq2/mc10_7TeV/NTUP_TOP/e737_s933_s946_r2215_r2260_p542/mc10_7TeV.107670.AlpgenJimmyZtautauNp0_pt20.merge.NTUP_TOP.e737_s933_s946_r2215_r2260_p542_tid326436_00_subXYZ/NTUP_TOP.326436._000527.root.1 - T1s only!!! For files produced at T2s, "_sub" are lost by DDM transfer. - ATLAS convention is not quite concrete - Forced by SE limitation - Ext3 file system: 64K sub directories. - HPSS file system: 64K sub directories. #### Name space convention changing - The convention has changed over the years. - Force by the storage file system limitation - 64K subdirectories limit in ext3 - 64K subdirectories limit HPSS tape systems - Eg - DSN/file: data11_7TeV.00180309.physics_Egamma.merge.NTUP_TOP.f369_m81 2_p530_p577_tid367204_00/ NTUP_TOP.367204._000043.root.1 - Current convention: - » /atlas/dq2/data11_7TeV/NTUP_TOP/f369_m812_p530_p577/data11_7T eV.00180309.physics_Egamma.merge.NTUP_TOP.f369_m812_p530_p57 7_tid367204_00/ NTUP_TOP.367204._000043.root.1 - Actual path - » /atlas/dq2/data11_7TeV/NTUP_TOP/data11_7TeV.00180309.physics_Eg amma.merge.NTUP_TOP.f369_m812_p530_p577_tid367204_00_sub02 1131151/ NTUP_TOP.367204. 000043.roo.1 #### Different LFC path at different site - Caused by the difference in the site configuration - Lfcpath=/grid/atlas/dq2 - Lfcpath=/grid/atlas/users/pathena - Eg. File User.ABC.DDD.1 could be located at - /grid/atlas/dq2/user/ABC/DDD/user.ABC.DDD.1 - /grid/atlas/users/pathena/user/ABC/DDD/user.ABC.DDD.1 #### Name-to-name module - xRootd allows the use of external module to translate the externally requested path to the actual path in the storage - Name-to-name module External request /a/b/c/d.1 Name-to-name Actual file /V/W/X/Y/Z.1 #### Current name-to-name module - Current implementation of NtoN module by Charles - Search files in LFC name space - Leading /grid is removed from LFC path. - /grid/atlas/A/B/C -> /atlas/A/B/C - In US LFCs, there is a symlink in LFC. /atlas is a simlink for /grid/atlas - So, it is equivalent. - The request is expected to be correctly formatted in the current ATLAS convention. - /atlas/dq2/proj/..../filename - It can search parent _subXYZ directories (for T1s) - Eg. /atlas/dq2/A/B/C.1 -> /atlas/dq2/A/B_subXYZ/C.1 ## Deficiency of current NtoN - Not 100% of files can be found. - Files are stored with the different conventions won't be found. - Search on _subXYZs might be problematic???? - Inherent problem of assuming that the file path in LFC is unique. - Only GUID is unique. - If guid was the filename in the flat filename structure, we won't be having this discussion. - » Can't be possible by the SE's limitation ## Improving NtoN - Modify the possible search path to accommodate the changing conventions and/or configuration - Add correct symlink - Use GUID: - DQ2 has 100% hit rate because it uses GUID to find a file. - Eg. To find /A/B/C/D.1, NtoN might accept /A/B/C/D.1+guid=XYZ #### dCache xRootd door with NtoN - dCache has the own, native xRootd service. - Can access files via xrootd protocol. - Name-to-name is not quite modular or flexible. - Prefix can be changed with fixed path. - ATLAS needs dynamic changes of path. - Needs code change->doable.