Any Data, Any Time, Anywhere

Improving Data Access for the LHC using Xrootd

Introducing...

- "Any Data, Any Time, Anywhere" is a NSFfunded research project on enhancing data accessibility in HEP.
 - Award #s 1104549, 1104664, 1104447; a
 collaboration between UNL, UCSD, and UW.
 - We'd like to thank the NSF for their support of this project.

Improving Data Accessibility

- The WLCG has built a marvelous grid in support of the LHC experiment's computing programs.
 - In 2011 especially, it has demonstrated the its worthiness in terms of throughput.
 - Unfortunately, latency to physics data is fairly high.
 - I have seen folks submit a grid job in order to read out a single event. Not pretty.
 - I have seen students try to figure out how to use SRM directly. Also not pretty.

Ways to improve Data Access

- Over the next three years, AAA is going to focus on getting data to physicists. We'll be:
 - Making sure the physics applications are amenable to high-latency operation.
 - Building and operating reliable data federations.
 - Educating physicists on using the federation.
 - Expand the number of sites that can do work for CMS by reaching T3 and opportunistic sites.
- All while trying to keep an eye on the vertical stack – from the application software to the underlying storage.

Long-Lasting Contributions

- The AAA project isn't about building a new piece of software.
 - Instead, we'll be synthesizing several existing pieces of software,
 - Writing new modules and functionality,
 - And writing small, peripheral pieces of software where we identify holes.
 - But try to find a permanent home for them!
- Message: To be long-lasting on a temporary grant, we must focus on collaboration!

Aside: What is a Data Federation?

- One personal "goal" for the workshop is to figure out the precise definition of a data federation.
- Here's my working one:
 - An infrastructure which provides the user the ability to access data uniformly across multiple resources, without knowledge of data location, using a global namespace.
 - Often done by having the user accessing a single, well-known endpoint.

Data Federations

- We form a data federation by:
 - Adding an Xrootd interface to each site (using either native implementation or modular plugin).
 Sometimes the interface goes directly to data servers, sometimes it is a proxy.
 - Using cmsd, we cluster nearby sites together, so they are accessible via a regional redirector.
 - Using peering, we connect multiple regions together (work in progress).

In a crudely drawn picture...

Peering Between Regions

CMS-isms

- Since we're working within CMS, it's probably worth noting a few items:
 - Global namespace: Xrootd exports the CMS global namespace; the mapping from global-to-local is a well-defined function at each CMS site.
 - Mapping is defined by a set of rules in an XML file.
 - Authorization: Authorization is based upon the same GSI/VOMS model as GridFTP or SRM.
 - Maps GSI/VOMS to a Unix user, then use underlying Xrootd user authorization scheme.

Uses of Data Federations

- Fallback: If a file is inaccessible or truncated locally, the user application can transparently fallback to the regional redirector.
- Interactive Access: End-user can access files directly for the event viewer or interactive session, regardless of where they are.
- "Diskless" sites: A small site could operate using the data federation as their exclusive source for experiment data.

Uses of Data Federations

- Overflow: If a job has been in the queue for over a threshold, allow it to go to a site which does not have the required input data.
 - Can be done for jobs in a global queue.
 - Or jobs in the local batch system.
- We have recently enabled the use of overflow for CMS jobs, and have gained lots of operational experience (both positive and negative) in dealing with the federation.

Uses of Data Federations

- We spend a lot of money on reliability:
 - High manual cost to recover data or lost time if user hits a problem file, so we have 2 copies of everything.
 - If there is reliable WAN fallback, local reliability is less important.
 - Hence, we could replicate a subset of our data only once, save money on disk, and deploy more CPUs.

Application Support

- Without proper application support, the whole exercise is fairly useless.
- It is a long, hard year's worth of work to decrease your application's sensitivity to latency. Prerequisite to remote I/O.
- We are working on building a standard candle to detect regressions in CMSSW I/O.
- Also working to improve exit codes and error messages for the Xrootd fallback case.

Monitoring

- There will be a dedicated presentation on Tuesday.
- Highlights:
 - We can monitor application CPU efficiency.
 - We can correlate a user's activity across sites.
 - We have basic site usage statistics.
- As we progress, we still find "holes" in what we watch and what Xrootd provides. This system will be growing for awhile.
 - Particularly, I'm interested in the "end-to-end": correlate application monitoring with Xrootd monitoring.
 - Also, in identifying problematic servers/sites ASAP.

Maximum: 6,985 GB, Minimum: 75.62 GB, Average: 2,064 GB, Current: 6,985 GB

Example daily usage graph

Xrootd Summary for 2011-11-16 | 7.13 TB | 82% increase

-								-			-
I	Source Site	I	Volume GB	# of	Transfers	I	Yesterday Diff	I	One Week Di	ff	I
Ī	DESY	 I	440	 	706	Ι	25%		577	74%	-
	GLOW		931	1	2,953		152%		-1	L9%	
	MIT		1,745	1	8,448		1377%		Unknown		
	Nebraska		353		8,453	I	88%		-8	36%	
	Purdue		0	1	2,385		-97%		-18	30%	
-	T2_IT_Bari		782	1	387	I	14686%		Unknown		
-	UCSD	1	2,878	1	8,180	I	1%		51	L8%	
-	Vanderbilt		1	1	601	I	-89%		Unknown		١

Sour	ce Site	Client Domain	١	Volume	GB		Yesterday	Diff	I	One Week	Diff	I
DESY		<u>ba.infn.it</u>	1		16	1		130%	1		1910%	
DESY		desy.de	1		0	1		9%	1		-6%	ı
DESY		grid.hep.ph.ic.ac.uk			45		Unknown		ı	Unknown		ı
DESY		naf			0		Unknown		ı	Unknown		ı
DESY		<u>ts.infn.it</u>		(380			10%	1		5587%	ı
GLOW		che.wisc.edu			45		;	2661%	1		495%	1
GLOW		chtc.wisc.edu			91		;	2569%	1		-53%	ı
GLOW		<u>cs.wisc.edu</u>			62		1	6425%	ı		-6%	ı
GLOW		fnal.gov			1			400%	1		-86%	1
GLOW		hep.wisc.edu		(553			81%	1		-18%	1
GLOW		icecube.wisc.edu			1		Unknown		ı		674%	ı
GLOW		ihepa.ufl.edu			0		Unknown		ı		-100%	ı
GLOW		lmcq.wisc.edu			42			4294%	I		59%	I

Example daily usage email

Status

- Two regions, EU and US.
- EU region has 1 T1 and 4 T2s participating (small percentage of possible sites).
- US region has T1 and 8 T2s participating (all sites).
 - Sees 1-5TB, 10-20 users / day.
 - Overflow in place for all users, typically up to 10% of total glidein usage. Drop in CPU efficiency varies, but average is between 5 and 10%.
- Ready and willing to include more sites and more users.

https://twiki.cern.ch/twiki/bin/view/Main/CmsXrootdArchitecture

Things Cooking

- The next few slides are directions we plan on investigating in the next year.
 - By staying awake for the next five minutes, you are making an irrevocable agreement to not hold us to any forward-looking statements!

Data Caching

- Data caching is a tricky topic.
 - Advantages of caching are well known.
 - But don't forget the disadvantages of caching (cache poisoning, thrashing) are also well known.
- Probable strategy:
 - Develop capabilities for a known, controlled use case (i.e., restoring lost data at a T2). Develop corresponding monitoring.
 - Extend caching to under-served use cases (T3s).
 - Evaluate performance, and decide whether to extend.

Data Caching

- I feel we haven't really scratched the surface until we get a thorough cache thrashing.
 - Similar to how the first "real experience" for cross-site access is when you have to debug it!
 - Recall the cache is really defined by the eviction policy!
- A likely approach will be to:
 - Implement a "caching proxy" that plugs into the OSS.
 - Implement a modular eviction policy (and policy for adding files to the cache) so we can do experiments.

Smarter Redirection

- A primary driver for region-based federations is the cost of mis-redirection.
 - A US client really doesn't want to go to the EU unless it is necessary.
 - Regions bound the network distance between sites; toohigh latency can harm CPU efficiency.
 - But even within regions, not all redirections have the same cost (consider a client on Caltech campus; they would prefer to go to the on-campus cluster than Wisconsin).
- We hope to study this over the next year to come up with some smarter approaches; metrics is "can't be worse than current round-robin".

Data-Aware Scheduling

- Our current systems (Condor-based) use crude data scheduling: prior to submit, the client looks up the sites with the necessary data, and hardcodes this as the list of possible sites.
 - No regard to changing conditions after submit (new copies, deleted copies).
 - No regard to site storage health.
- This is another topic for research feeding dynamic location and site data into Condor.

Opportunistic and Marginal Resources

- Here, "marginal" refers to the amount of time the resource is willing to deal with HEP, not the size!
- Goal is to "fly-in" a complete CMS environment:
 - Use Xrootd to provide data.
 - HTTP caching for conditions.
 - CVMFS for software.
 - Ideally, only pre-requisite is the ability to launch a user process.
- As CVMFS requires site support, we are looking into making it userland-only using Parrot.
 - http://nd.edu/~ccl/software/parrot/

Concerns

- Federations make problems harder to debug!
 - Now, all sites are coupled together.
 - Must make sure the system reliability isn't the minimum of all involved sites!
- Must still learn to quantify the system in terms of capacity and limits.
- Must make sure the system is future-proof, and not a function of quirks in today's data analysis styles.

Take-Home Message

- The AAA project is about data access. We're:
 - Using Xrootd to build a data federation for lowlatency access.
 - Combining with Condor to open up access to more CPUs.
 - Working to make everything "production quality".
 - And have 3 years to do it!