Flavour physics A new song to an old tune

Sébastien Descotes-Genon

Laboratoire de Physique Théorique CNRS & Université Paris-Sud 11, 91405 Orsay, France

Babar collaboration meeting, LAPP
June 28 2011

Foreword

Remarkable achievement in flavour physics over the last decades

- Extensive experimental programmes B-factories
- Improvement in theoretical undestanding of strong interactions
- Confirming the validity of Kobayashi-Maskawa mechanism of CP-violation to a high accuracy

Flavour physics very good at mapping the structure of New Physics

- neutral meson mixings hinted at charm and top quarks
- CKM and hierarchy of quark masses low-energy probe of Higgs-fermion interactions
- among most stringent constraints for any extension of SM ($K\bar{K}$ mixing, $b \to s\gamma \dots$)

More and more, bottom-up exploration of NP using well-known quantities to constrain/imagine new models

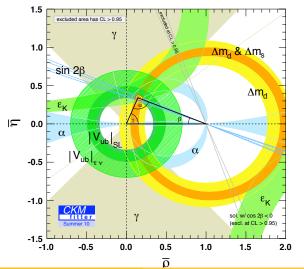
Contents

- Flavour physics from SM to NP
- 2 Effective Hamiltonian
- New physics in meson mixing
- Mew Physics in radiative decays

Flavour physics from SM to NP

Unitarity triangle in the SM

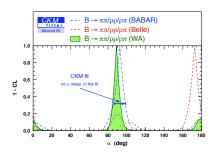
Combining observables with good experimental and theoretical control

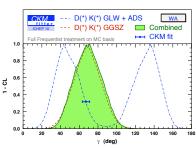


```
|V_{ud}|, |V_{us}|
|V_{cb}|, |V_{ub}|_{SL}
    B \rightarrow \tau \nu
 \Delta m_d, \Delta m_s
           \epsilon_{K}
       \sin 2\beta
            \alpha
```

```
\begin{array}{l} A = 0.815^{+0.011}_{-0.029} \\ \lambda = 0.2254^{+0.0008}_{-0.0008} \\ \bar{\rho} = 0.144^{+0.029}_{-0.018} \\ \bar{\eta} = 0.342^{+0.016}_{-0.016} \\ (68\% \text{ CL}) \end{array}
```

The three angles





- Two angles precisely measured: α (5%) and β (4.2%)
- Only γ less acurately measured (25%) than predicted (6%)

One of the many successes from the B factories

Making predictions in the Standard Model...

Observable	Measurement	Prediction		Pull (σ)
$\mathcal{B}(B^+ o au^+ u_ au)$	$(16.8 \pm 3.1) \cdot 10^{-5}$	(7.57	+0.98 -0.61) · 10 ⁻⁵	2.8
$\mathcal{B}(B^+ o \mu^+ u_\mu)$	< 10 ⁻⁶	(3.74	+0.44 -0.38) · 10 ⁻⁷	-
$\mathcal{B}(\mathcal{D}_{\mathbf{s}}^+ o au^+ u_{ au})$	$(5.29 \pm 0.28) \cdot 10^{-2}$	(5.44	+0.05 -0.17) · 10 ⁻²	0.5
$\mathcal{B}(\mathcal{D}_{s}^+ o \mu^+ u_\mu)$	$(5.90 \pm 0.33) \cdot 10^{-3}$	(5.39	$^{+0.21}_{-0.22}$) $\cdot 10^{-3}$	1.3
${\cal B}(D^+ o\mu^+ u_\mu)$	$(3.82 \pm 0.32 \pm 0.09) \cdot 10^{-4}$	(4.18	$^{+0.13}_{-0.20}$) · 10 ⁻⁴	0.6
$\mathcal{B}(B_s^0 o au^+ au^-)$	-	(7.73	$^{+0.37}_{-0.65}$) \cdot 10 ⁻⁷	-
$\mathcal{B}(\mathcal{B}_{s}^{0} ightarrow\mu^{+}\mu^{-})$	$< 32 \cdot 10^{-9}$	(3.64	$^{+0.17}_{-0.31}) \cdot 10^{-9}$	-
$\mathcal{B}(B_{\mathcal{S}}^0 ightarrow e^+e^-)$	$< 2.8 \cdot 10^{-7}$	(8.54	$^{+0.40}_{-0.72}$) $\cdot 10^{-14}$	-
$\mathcal{B}(\mathcal{B}_d^0 o au^+ au^-)$	$< 4.1 \cdot 10^{-3}$	(2.36	$^{+0.12}_{-0.21}$) \cdot 10 ⁻⁸	-
$\mathcal{B}(\mathcal{B}_d^0 o \mu^+\mu^-)$	< 6 · 10 ⁻⁹	(1.13	$^{+0.06}_{-0.11}$) \cdot 10 ⁻¹⁰	-
$\mathcal{B}(\mathcal{B}_d^0 \to e^+e^-)$	< 8.3 · 10 ⁻⁹	(2.64	$^{+0.13}_{-0.24}) \cdot 10^{-15}$	-
$\Delta\Gamma_s/\Gamma_s$	$0.092^{+0.051}_{-0.054}$	0.179	+0.067 -0.071	0.5
$a_{ m SL}^d$	$(-47 \pm 46) \cdot 10^{-4}$	(-6.5	$^{+1.9}_{-1.7}$) · 10 ⁻⁴	0.8
a_{SL}^{s}	$(-17 \pm 91^{+12}_{-23}) \cdot 10^{-4}$	(0.29	$^{+0.09}_{-0.08}) \cdot 10^{-4}$	0.2
$\mathit{a}_{\mathrm{SL}}^{\mathit{s}} - \mathit{a}_{\mathrm{SL}}^{\mathit{d}}$	-	(6.8	$^{+1.9}_{-1.7}) \cdot 10^{-4}$	-
$\sin(2\beta)$	0.678 ± 0.020	0.832	+0.013 -0.033	2.7
$\mathcal{B}(B_d \to K^*(892)\gamma)$	$(43.3 \pm 1.8) \cdot 10^{-6}$	(64	⁺²² -21) · 10 ⁻⁶	1.2
$\mathcal{B}(B^- \to K^{*-}(892)\gamma) \cdot 10^6$	$(42.1 \pm 1.5) \cdot 10^{-6}$	(66	$^{+21}_{-20}$) · 10 ⁻⁶	1.1
$\mathcal{B}(\mathcal{B}_{\mathcal{S}} o \phi \gamma)$	$(57^{+21}_{-18}) \cdot 10^{-6}$	(65	$^{+31}_{-24}$) · 10 ⁻⁶	0.1
$\mathcal{B}(B \to X_{\mathcal{S}} \gamma) / \mathcal{B}(B \to X_{\mathcal{C}} \ell \nu)$	$(3.346 \pm 0.247) \cdot 10^{-3}$	(3.03	+0.34 -0.32) · 10 ⁻³	0.2
$\mathcal{B}(\mathcal{K}^+ o \pi^+ u \bar{ u})$	$(1.75^{+1.15}_{-1.05}) \cdot 10^{-10}$	(0.854	+0.116 -0.098) · 10 ⁻¹⁰	0.8
$\mathcal{B}(K_L o \pi^0 u ar{ u})$	-	(0.277	$^{+0.028}_{-0.035}) \cdot 10^{-10}$	-

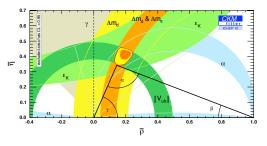
J. Charles et al., arXiv:1106.4041

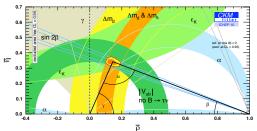
... and spotting discrepancies to go beyond

Looking for discrepancies ?

- $|V_{ub}|$ and $|V_{cb}|$ from semileptonic decays \Rightarrow theoretical issue of uncertainties of lattice (excl.) vs OPE (incl.)
- ϵ_K vs sin(2 β)
- \Longrightarrow very dependent on the errors attached to B_K
- asymmetries in $B \to K\pi$ \Longrightarrow difficulty of interpreting non-leptonic B decays
- $\sin(2\beta)$ vs $B \rightarrow \tau \nu$
- B_s mixing
- ...

A discrepancy: $\sin(2\beta)$ vs $B \rightarrow \tau \nu$ (1)



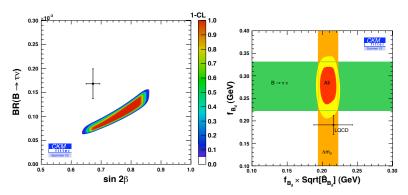


The global fit χ^2_{min} drops by \sim 2.8 σ if we remove

• $\sin 2\beta_{c\bar{c}}$

• or $B \rightarrow \tau \nu$

A discrepancy: $\sin(2\beta)$ vs $B \rightarrow \tau \nu$ (2)

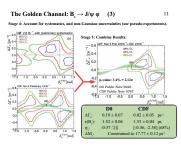


Issue *not only* the value of f_{B_d} since 2.9σ discrepancy from

$$\frac{B(B \to \tau \nu)}{\Delta m_d} = \frac{3\pi}{4} \frac{m_\tau^2 \tau_B}{m_W^2 \eta_B S[x_t]} \left(1 - \frac{m_\tau^2}{m_B^2}\right)^2 \frac{\sin^2 \beta}{\sin^2 (\alpha + \beta)} \frac{1}{|V_{ud}|^2 B_{B_d}}$$

Hadronic (lattice) inputs: $B(B o au
u) \propto f_{B_d}^2$, $B_d ar{B}_d$ mixing $\Delta m_d \propto f_{B_d}^2 B_{B_d}$

Two more discrepancies out of the SM fit



 $(\Delta\Gamma_s,\phi_s)$

preliminary combination · Our (preliminary) combination of all measurements of semileptonic charge asymmetry shows a similar deviation from the SM SM -0.04 -0.03 -0.02 -0.01 0 0.01 2010/05/14

Linear comb of a_{SI}^d and a_{SI}^s

- $B \rightarrow \tau \nu$ vs sin 2 β
- ϕ_s from $B_s \to J/\Psi \phi$ and τ_{FS} (null test)
- A_{SI} (null test)

1D constraint : 2.6 σ

1D constraint : 2.1 σ

1D constraint : 2.9 σ

 \Longrightarrow Combination of χ^2 uncorrelated : 3.7 σ

[FPCP10/ICHEP10 ϕ_s not included, since no CDF/DØaverage]

Flavour sector in the Standard Model

$$\mathcal{L} = \mathcal{L}_{gauge}(A_a, \Psi_j) + \mathcal{L}_{Higgs}(\phi, A_a, \Psi_j)$$

Flavour sector in the Standard Model

$$\mathcal{L} = \mathcal{L}_{gauge}(A_a, \Psi_j) + \mathcal{L}_{Higgs}(\phi, A_a, \Psi_j)$$

Gauge part $\mathcal{L}_{gauge}(A_a, \Psi_i)$

- Highly symmetric (gauge and flavour symmetries)
- Well-tested experimentally
- Stable with respect to quantum corrections

Flavour sector in the Standard Model

$$\mathcal{L} = \mathcal{L}_{gauge}(A_a, \Psi_j) + \mathcal{L}_{Higgs}(\phi, A_a, \Psi_j)$$

Gauge part $\mathcal{L}_{gauge}(A_a, \Psi_i)$

- Highly symmetric (gauge and flavour symmetries)
- Well-tested experimentally
- Stable with respect to quantum corrections

Higgs part $\mathcal{L}_{Higgs}(\phi, A_a, \Psi_j)$

- Ad hoc description
- Dynamics untested (no Higgs seen yet)
- Not stable w.r.t quantum corrections
- Origin of flavour structure of the Standard Model
- First probe of Higgs interaction from...flavours physics
- CKM matrix = misalignement of Higgs-fermion Yukawa interactions between up- and down-sector

Modern view of the Standard Model

SM = effective low-energy theory from an underlying, more fundamental and yet unknown, theory
As long as we stay at low energies, below the scale ∧ of new particles

$$\mathcal{L} = \mathcal{L}_{gauge}(\textit{A}_{\textit{a}}, \Psi_{\textit{j}}) + \mathcal{L}_{\textit{Higgs}}(\phi, \textit{A}_{\textit{a}}, \Psi_{\textit{j}}) + \sum_{\textit{d} \geq 5} \frac{\textit{c}_{\textit{n}}}{\wedge^{\textit{d}-4}} \textit{O}_{\textit{n}}^{(\textit{d})}(\phi, \textit{A}_{\textit{a}}, \Psi_{\textit{j}})$$

New operators O_n , suppressed by powers of Λ

- Describe impact of New Physics on "low-energy" physics
- Are made of SM fields and compatible with its symmetries

Two axes of experimental activity for NP

- Energy scale, underlying d.o.f. ? High-energy experiments
- Symmetries and structure ? High-precision (low-energy) expts

Constraints on NP from flavour physics

Mainly from loop-induced processes with quantum sensitivity to high scales and (ideally) are suppressed in the Standard Model

• Flavour Changing Neutral currents $\Delta F = 1$ $B \to X_s \gamma, B \to X_s \ell^+ \ell^-, B_s \to \ell^+ \ell^-, K \to \pi \nu \bar{\nu}, K \to \pi \ell^+ \ell^- \dots$

• Neutral-meson mixing $\Delta F = 2$

$$\Delta m_d$$
, $a_{CP}(J/\Psi K)$, Δm_s , $a_{CP}(J/\Psi \phi)$, Δm_K , ϵ_K ...

Constraints on NP from flavour physics

Mainly from loop-induced processes with quantum sensitivity to high scales and (ideally) are suppressed in the Standard Model

• Flavour Changing Neutral currents $\Delta F = 1$ $B \to X_s \gamma, B \to X_s \ell^+ \ell^-, B_s \to \ell^+ \ell^-, K \to \pi \nu \bar{\nu}, K \to \pi \ell^+ \ell^- \dots$

• Neutral-meson mixing $\Delta F = 2$

$$\Delta m_d$$
, $a_{CP}(J/\Psi K)$, Δm_s , $a_{CP}(J/\Psi \phi)$, Δm_K , ϵ_K . . .

How to exploit the constraints?

- Model-dependent approach: take your favourite model and see whether it survives all the tests (generally with fine-tuning)
- Model-independent approach: take a general framework, determine its parameters to guide model builders (who should explain suppression of operators)
- Require confidence in theoretical uncertainties for strong interaction (or poorly understood QCD will be turned into NP)

Constraints on NP from flavour physics

Mainly from loop-induced processes with quantum sensitivity to high scales and (ideally) are suppressed in the Standard Model

• Flavour Changing Neutral currents $\Delta F = 1$ $B \to X_s \gamma, B \to X_s \ell^+ \ell^-, B_s \to \ell^+ \ell^-, K \to \pi \nu \bar{\nu}, K \to \pi \ell^+ \ell^- \dots$

• Neutral-meson mixing $\Delta F = 2$

$$\Delta m_d$$
, $a_{CP}(J/\Psi K)$, Δm_s , $a_{CP}(J/\Psi \phi)$, Δm_K , ϵ_K ...

How to exploit the constraints?

- Model-dependent approach: take your favourite model and see whether it survives all the tests (generally with fine-tuning)
- Model-independent approach: take a general framework, determine its parameters to guide model builders (who should explain suppression of operators)
- Require confidence in theoretical uncertainties for strong interaction (or poorly understood QCD will be turned into NP)

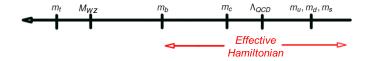
Power and limitation of model-independent approach in the following

Making life slightly easier

Flavour physics mixes strong/weak interaction:

- Weak Lagrangian in terms of quarks, but hadronic final states
- Multi-scale problem $m_t, m_b, \Lambda_{QCD}, m_{light}$
- High-energies mixing SM and NP, whereas low energies SM only

Here scales of order m_b (or lower)! so why not integrate out heavier degrees of freedom (t, W, Z)?

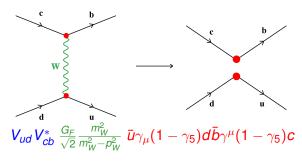


to get weak effective Hamiltonian $\mathcal{H}_{\mathrm{eff}}$

(still b, c, s, d, u, g and γ as dynamical particles)

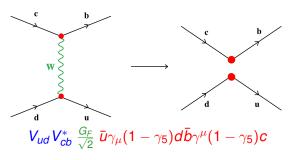
Fermi-like approach : μ separation between low and high energies

- Short distances : (perturbative) Wilson coefficients
- Long distances : local operator



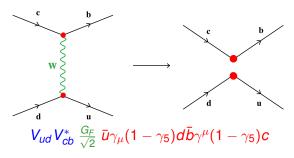
Fermi-like approach : μ separation between low and high energies

- Short distances : (perturbative) Wilson coefficients
- Long distances : local operator



Fermi-like approach : μ separation between low and high energies

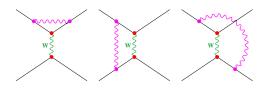
- Short distances : (perturbative) Wilson coefficients
- Long distances : local operator



$$A(B \to H) = \frac{G_F}{\sqrt{2}} \sum_i \lambda_i C_i(\mu) \langle H|\mathcal{O}_i|B\rangle(\mu)$$

- λ_i collect CKM-matrix elements,
- $C_i(\mu)$ Wilson coefficients (physics above m_b)
- matrix-elements of local operators O_i

QCD effects



When we take into account one (or more) gluons

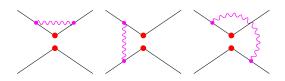
$$\mathcal{H}_{\mathrm{eff}} = \frac{G_F}{\sqrt{2}} V_{cb}^* V_{ud} [C_1(\mu) Q_1(\mu) + C_2(\mu) Q_2(\mu)]$$

$$Q_1 = (\bar{b}_{\alpha}c_{\beta})_{V-A}(\bar{u}_{\beta}d_{\alpha})_{V-A} \qquad (\bar{b}c)_{V-A} = \bar{b}\gamma_{\mu}(1-\gamma_5)c$$

$$Q_2 = (\bar{b}_{\alpha}c_{\alpha})_{V-A}(\bar{u}_{\beta}d_{\beta})_{V-A}$$

- new colour structures (flipped indices α, β)
- effective theory more divergent than SM, absorbed by renormalisation, inducing μ dependence
- C_1 and C_2 calculable fonctions of μ as perturbative series in α_s

Matching and Wilson coefficients



 C_1 and C_2 so that full and effective theories yield same result

$$C_1(\mu) = -3\frac{\alpha_s}{4\pi}\log\frac{M_W^2}{\mu^2} + O(\alpha_s^2), \quad C_2(\mu) = 1 + \frac{3}{N_c}\frac{\alpha_s}{4\pi}\log\frac{M_W^2}{\mu^2} + O(\alpha_s^2)$$

Separation of scales $-p^2 < \mu^2 < M_W^2$

$$\begin{pmatrix}
1 + \alpha_s X \log \frac{M_W^2}{-\rho^2} \end{pmatrix} = \left(1 + \alpha_s X \log \frac{M_W^2}{\mu^2} \right) \times \left(1 + \alpha_s X \log \frac{\mu^2}{-\rho^2} \right)$$

$$A_{full} = \int_{P^2}^{M_W^2} \frac{dk^2}{k^2} = \int_{L^2}^{M_W^2} \frac{dk^2}{k^2} + \int_{P^2}^{\mu^2} \frac{dk^2}{k^2} = C_i \otimes \langle O_i \rangle$$

Large logarithms

$$C_1(\mu) = -3\frac{\alpha_s}{4\pi}\log\frac{M_W^2}{\mu^2} + O(\alpha_s^2), \quad C_2(\mu) = 1 + \frac{3}{N_c}\frac{\alpha_s}{4\pi}\log\frac{M_W^2}{\mu^2} + O(\alpha_s^2)$$

• At low $\mu = m_b$, $\alpha_s(\mu) \times \log(M_W^2/\mu^2)$ not so small better to sum all terms like $\left(\alpha_s(\mu)\log\frac{M_W^2}{\mu^2}\right)^n$

Large logarithms

$$C_1(\mu) = -3\frac{\alpha_s}{4\pi}\log\frac{M_W^2}{\mu^2} + O(\alpha_s^2), \quad C_2(\mu) = 1 + \frac{3}{N_c}\frac{\alpha_s}{4\pi}\log\frac{M_W^2}{\mu^2} + O(\alpha_s^2)$$

- At low $\mu = m_b$, $\alpha_s(\mu) \times \log(M_W^2/\mu^2)$ not so small better to sum all terms like $\left(\alpha_s(\mu)\log\frac{M_W^2}{\mu^2}\right)^n$
- μ -dep. of α_s from renormalisation group equation (RGE)

$$\frac{d\alpha_s(\mu)}{d\log\mu} = -2\beta_0 \frac{\alpha_s^2}{4\pi} - 2\beta_1 \frac{\alpha_s^3}{(4\pi)^2} + \dots$$

- $\beta_0 = (11N_c 2N_f)/3$ from 1-loop vacuum polarisation
- $\beta_1 = (34N_c^2 10N_cN_f 3(N_c^2 1)N_f/N_c)/3$ from 2 loops
- ullet log μ dependence reflects divergences occuring at each loop

(Next-to-...) Leading Logarithms in α_s

• Keeping only first order in $d\alpha_s/d\log\mu$ and solving

$$\alpha_s(\mu) = \frac{\alpha_s(\mu_0)}{1 - \beta_0 \frac{\alpha_s(\mu_0)}{2\pi} \log(\mu_0/\mu)} = \alpha_s(\mu_0) \left[1 + \sum_{n=1}^{\infty} \left(\beta_0 \frac{\alpha_s(\mu_0)}{2\pi} \log \frac{\mu_0}{\mu} \right)^n \right]$$

• provides resummation of leading logs $\alpha_s^n(\mu_0) \log^n(\mu_0/\mu)$ needed for $\mu \ll \mu_0$: $\alpha_s(\mu_0) \ll 1$ but $\alpha_s(\mu_0) \log(\mu_0/\mu) = O(1)$

(Next-to-...) Leading Logarithms in α_s

• Keeping only first order in $d\alpha_s/d\log\mu$ and solving

$$\alpha_s(\mu) = \frac{\alpha_s(\mu_0)}{1 - \beta_0 \frac{\alpha_s(\mu_0)}{2\pi} \log(\mu_0/\mu)} = \alpha_s(\mu_0) \left[1 + \sum_{n=1}^{\infty} \left(\beta_0 \frac{\alpha_s(\mu_0)}{2\pi} \log \frac{\mu_0}{\mu} \right)^n \right]$$

• provides resummation of leading logs $\alpha_s^n(\mu_0) \log^n(\mu_0/\mu)$ needed for $\mu \ll \mu_0$: $\alpha_s(\mu_0) \ll 1$ but $\alpha_s(\mu_0) \log(\mu_0/\mu) = O(1)$

 $d\alpha_s/d\log\mu$ through (k+1)-loop computation provides the resumation of $(\text{next-to-})^k$ leading log contributions

(Next-to-...) Leading Logarithms in Wilson Coeffs

ullet Introducing $Q_\pm=(Q_2\pm Q_1)/2, C_\pm=C_2\pm C_1$

$$\mathcal{H}_{\mathrm{eff}} = rac{G_F}{\sqrt{2}} \emph{V}^*_{cb} \emph{V}_{ud} [\emph{C}_+(\mu) \emph{Q}_+(\mu) + \emph{C}_-(\mu) \emph{Q}_-(\mu)]$$

 μ independence of the effective Hamiltonian yields RGE for C's

$$\frac{dC_{\pm}(\mu)}{d\log\mu} = \gamma_{\pm}(\mu)C_{\pm}(\mu) \qquad \gamma_{\pm} = \pm \frac{\alpha_{s}(\mu)}{4\pi} \frac{6(N_{c} \mp 1)}{N_{c}}$$

with mixing between C_1 and C_2

(Next-to-...) Leading Logarithms in Wilson Coeffs

• Introducing $Q_{\pm} = (Q_2 \pm Q_1)/2, C_{\pm} = C_2 \pm C_1$

$$\mathcal{H}_{ ext{eff}} = rac{G_F}{\sqrt{2}} \emph{V}^*_{cb} \emph{V}_{ud} [\emph{C}_+(\mu) \emph{Q}_+(\mu) + \emph{C}_-(\mu) \emph{Q}_-(\mu)]$$

 μ independence of the effective Hamiltonian yields RGE for C's

$$\frac{dC_{\pm}(\mu)}{d\log\mu} = \gamma_{\pm}(\mu)C_{\pm}(\mu) \qquad \gamma_{\pm} = \pm \frac{\alpha_{s}(\mu)}{4\pi} \frac{6(N_{c} \mp 1)}{N_{c}}$$

with mixing between C_1 and C_2

• Dependence of α_s on μ

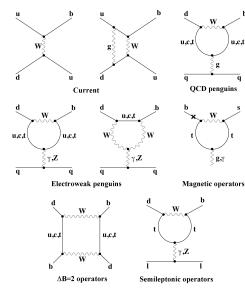
$$\frac{dg_s(\mu)}{\log \mu} = \beta(g_s(\mu)) = -\beta_0 \frac{g_s^3}{16\pi^2} + \dots \qquad \beta_0 = \frac{11N_c - 2N_f}{3}$$

$$\longrightarrow C_{\pm}(\mu) = \left[\frac{\alpha_s(M_W)}{\alpha_s(\mu)}\right]^{\frac{\gamma_{\pm}^{(0)}}{\beta^{(0)}}} C_{\pm}(M_W) \qquad \gamma_{\pm}^{(0)} = \frac{6(N_c \mp 1)}{N_c}$$

⇒Resumming leading logarithms in Wilson coefficients

SM operators of interest for heavy flavours

- Current-curent O_{1,2}
 - $\bullet \ (\bar{b}u)_{V-A}(\bar{u}d)_{V-A},$
 - $\bullet \ (\bar{b}_i u_j)_{V-A} (\bar{u}_j d_i)_{V-A}$
- QCD penguins O_{3,4,5,6}
 - $(\bar{b}d)_{V-A}\sum_{q}(\bar{q}q)_{V\pm A}$,
 - $\bullet \ (\bar{b}_i d_j)_{V-A} \sum_{q} (\bar{q}_j q_i)_{V\pm A}$
- E.weak penguins $O_{7,8,9,10}$
 - $(\bar{b}d)_{V-A}\sum_{q}e_{q}(\bar{q}q)_{V\pm A}$,
 - $(\bar{b}_i d_j)_{V-A} \sum_q e_q (\bar{q}_j q_i)_{V\pm A}$
- Magnetic operators $O_{7,8}^{\gamma}$
 - $\frac{e}{8\pi^2}m_b\bar{s}\sigma^{\mu\nu}(1+\gamma_5)bF_{\mu\nu},$ • $\frac{g}{g_{\pi\pi^2}}m_b\bar{s}\sigma^{\mu\nu}(1+\gamma_5)bG_{\mu\nu}$
- $\Delta B = 2$ operators $O_{|\Delta B|=2}$
 - $\bullet \ (\bar{b}d)_{V-A}(\bar{b}d)_{V-A}$
- $O_{9,10}^{\ell\ell} (\bar{b}s)_{V-A} (\bar{e}e)_{V/A}$



Inclusive vs exclusive

$$A(B \to H) = \frac{G_F}{\sqrt{2}} \sum_i \lambda_i C_i(\mu) \langle \mathbf{Q}_i \rangle \langle \mu \rangle$$

Inclusive decays

- $\sum_X |A(B o X)|^2 \propto \text{Im}\langle B|\mathcal{T}|B \rangle$ $\mathcal{T} = \int d^4x \mathcal{T}[\mathcal{H}_{\text{eff}}(x)\mathcal{H}_{\text{eff}}(0)]$
- ullet OPE + Quark hadron duality: $\mathcal{T} \propto \emph{O}_0 + \emph{O}_1/\emph{m}_b + \emph{O}_2/\emph{m}_b^2 + \dots$
- Perturbative part: O_0 up to same $O(\alpha_s^n)$ as Wilson coeffs
- Difficult to estimate/extract non-perturbative corrections O_{n>1}
- Issues with kinematical cuts, quark hadron duality violation...

Exclusive decays

- $\langle H|Q_i|B\rangle(\mu)$ reexpressed in terms of decay constants, form factors (easy for one-body final state, much harder for 2-body)
- From lattice QCD, light-cone sum rules, with issues on systematics

Advantages of effective Hamiltonian

$$A(B \to H) = \frac{G_F}{\sqrt{2}} \sum_i \lambda_i C_i(\mu) \langle \mathbf{Q}_i \rangle \langle \mathbf{\mu} \rangle$$

- Simplification of the problem, keeping only relevant d.o.f. (light quarks, low-energy γ , leptons)
- Matching to fundamental theory at a high scale M_W ($O(\alpha_s^n)$) and renormalisation of operators $O(\alpha_s^{n+1})$
 - \implies resummation of (next-to-)ⁿ leading logs in $C(\mu)$
- Connection between different processes sharing the same high-energy dynamics (penguins, boxes...)

Advantages of effective Hamiltonian

$$A(B \to H) = \frac{G_F}{\sqrt{2}} \sum_i \lambda_i C_i(\mu) \langle \mathbf{Q}_i \rangle \langle \mathbf{\mu} \rangle$$

- Simplification of the problem, keeping only relevant d.o.f. (light quarks, low-energy γ , leptons)
- Matching to fundamental theory at a high scale M_W ($O(\alpha_s^n)$) and renormalisation of operators $O(\alpha_s^{n+1})$
 - \Longrightarrow resummation of (next-to-)ⁿ leading logs in $C(\mu)$
- Connection between different processes sharing the same high-energy dynamics (penguins, boxes...)

Implementation of NP in an "almost" model-independent way

- change values of *C* (straitghtforward theoretically)
 - ⇒Illustration with NP in neutral-meson mixing
- include new Q (check observable sensitivity and operator mixing) \Longrightarrow Illustration with NP in $b \to s\gamma(*)$

New Physics in meson mixing

Neutral-B mixing

$$i\frac{d}{dt}\Big(\begin{array}{c}|B_q(t)\rangle\\|\bar{B}_q(t)\rangle\end{array}\Big)=\Big(M^q-\frac{i}{2}\Gamma^q\Big)\Big(\begin{array}{c}|B_q(t)\rangle\\|\bar{B}_q(t)\rangle\end{array}\Big)$$

 $\it M$ and Γ hermitian: mixing due to off-diagonal terms $\it M_{12}^q - i \Gamma_{12}^q/2$

 \Longrightarrow Diagonalisation: physical $|B^q_{H,L}
angle$ of masses $M^q_{H,L}$, widths $\Gamma^q_{H,L}$

In terms of
$$M_{12}^q$$
, $|\Gamma_{12}^q|$ and $\phi_q = arg\left(-\frac{M_{12}^q}{\Gamma_{12}^q}\right)$

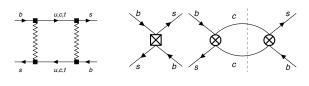
[small in SM]

- Mass difference $\Delta M_q = M_H^q M_L^q = 2|M_{12}^q|$
- Width difference $\Delta \Gamma_q = \Gamma_H^q \Gamma_L^q = 2|\Gamma_{12}^q|\cos(\phi_q)$
- Asymmetry $a_{SL} = \frac{\Gamma(\bar{B}^q(t) \to \ell^+ \nu X) \Gamma(B^q(t) \to \ell^- \nu X)}{\Gamma(\bar{B}^q(t) \to \ell^+ \nu X) + \Gamma(B^q(t) \to \ell^- \nu X)} = \frac{|\Gamma_{12}^q|}{|M_{12}^q|} \sin \phi_q$

p/q from mixing in time-dependent analysis of B decays

"phase"
$$\phi_{M_q} \simeq arg(M_{12}^{q*}) + O\left(\frac{|\Gamma_{12}^q|}{|M_{12}^q|}\right)$$

Mixing observables in SM



[Beneke et al 1996-98, Nierste and Lenz 2006]

Effective Hamiltonian approach for inclusive quantities

- M_{12}^q dominated by dispersive part of top boxes
 - involve one operator at LO: $Q = \bar{q}_L \gamma_\mu b_L \bar{q}_L \gamma^\mu b_L$
- \bullet Γ_{12}^q dominated by absorptive part of charm boxes
 - non local contribution, expressed as expansion in $1/m_b$
 - involve two operators at LO: Q and $\tilde{Q}_S = \bar{q}_L^\alpha b_R^\beta \bar{q}_L^\beta b_R^\alpha$
- $\Delta\Gamma_s$, $\Delta\Gamma_s/\Delta M_s$, a_{SL}^s as functions of bag parameters B, B_S and decay constant parametrising value of operators Q, \tilde{Q}_S

New Physics in $\Delta F = 2$

- $B \rightarrow \tau \nu$ vs $(\sin 2\beta, \Delta m_d)$
- ϕ_s from $B_s \to J/\Psi \phi$ and τ_{FS}
- A_{SL} from like-sign dimuon charge asymmetry

Framework: New Physics only in $\Delta F = 2$ processes

- M₁₂ dominated by short distances (top boxes) [affected by NP]
- Γ₁₂ dominated by tree decays into charm [not affected by NP]
- Tree level (4 diff flavours) processes not affected by New Physics
- Model-independent parametrisation

$$\langle B_q | \mathcal{H}_{ ext{eff}}^{SM+NP} | \bar{B}_q
angle = \langle B_q | \mathcal{H}_{ ext{eff}}^{SM} | \bar{B}_q
angle imes [ext{Re}(\Delta_q) + i \cdot ext{Im}(\Delta_q)]$$

 \Longrightarrow New physics only changing modulus and phase of M^q_{12}

[A. Lenz et al., PRD83 (2011) 036004]

Three different "model-independent" hypotheses

- Framework: NP only in $\Delta F = 2$ operators
- Scenarios (from the more specific to the more general)
 - A: Minimal Flavour Violation with small bottom Yukawa coupling

$$H^{|\Delta B|=2}=(V_{tq}^*V_{tb})^2CQ+h.c.$$
 C real

 $\Delta_d = \Delta_s$ real, related to *K*-meson

B: MFV with large bottom Yukawa coupling

$$H^{|\Delta B|=2} = (V_{tq}^* V_{tb})^2 [CQ + C_S Q_S + \tilde{C}_S \tilde{Q}_S] + h.c.$$

 $\Delta_d = \Delta_s$ complex, unrelated to *K*-meson

C : Non Minimal Flavour Violation

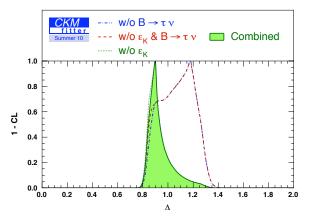
$$H^{|\Delta B|=2} = (V_{ta}^* V_{tb})^2 C_q Q + h.c.$$

 Δ_d and Δ_s complex independent, unrelated to K-meson

• Observables: Separated into CKM-fixing part and NP-fixing part

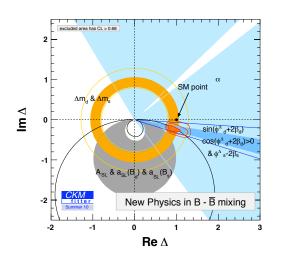
Scenario A: $\Delta_d = \Delta_s = \Delta$ real

- Most limited extension: $\Delta_d = \Delta_s$ real, related to $K\bar{K}$ mixing
- Compatible with 1, not much better than SM for discrepancies



2D SM hypothesis ($\Delta = 1 + i \cdot 0$): 3.7 σ

Scenario B: $\Delta_d = \Delta_s = \Delta$ complex

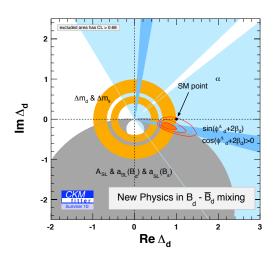


[Constraints 68% CL]

- Discrepancy from $Br(B \to \tau \nu)$ shifts β constraint from real axis
- Disagreement with SM driven in same dir by $Br(B \rightarrow \tau \nu)$, ϕ_s and A_{SL}

2D SM hypothesis ($\Delta = 1 + i \cdot 0$): 3.3 σ

Scenario C: $\Delta_d \neq \Delta_s$ - B_d mixing

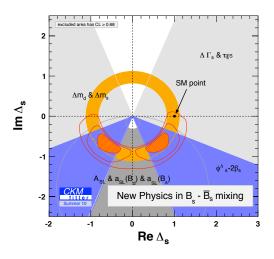


[Constraints 68% CL]

- Dominant const from β and Δm_d
 (2 sols. for apex of unitarity triangle)
- Tension from $Br(B \to \tau \nu)$ shifts β constraint from real axis
- Disagreement with SM driven in same dir by $Br(B \rightarrow \tau \nu)$ and A_{SI}

2D SM hypothesis ($\Delta_d = 1 + i \cdot 0$): 2.7 σ

Scenario C: $\Delta_d \neq \Delta_s$ - B_s mixing



[Constraints 68% CL]

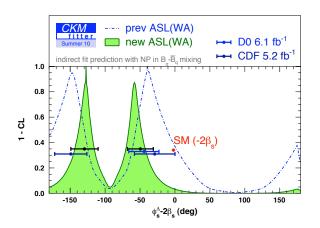
- Dominant constraints from Δm_s, φ_s and A_{SL}
- Disagreement with SM driven in same dir by ϕ_s and A_{SL}

2D SM hypothesis ($\Delta_s = 1 + i \cdot 0$): 2.7 σ

Scenario C: Prediction for ϕ_s

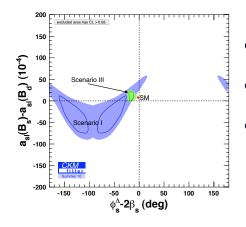
Possible to predict " ϕ_s " from $B_s \to J/\Psi \phi$ and to compare with current measurements

[average or recent CDF/D0 separately]



All scenarios: Predictions for $a_{SL}^d - a_{SL}^s$

Possible to predict $a^d_{SL} - a^s_{SL} = f(\phi_s|_{B_s \to J/\Psi\phi})$ and to compare with present/future measurements



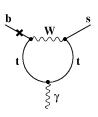
- SM = A $(\Delta_d = \Delta_s \text{ real})$
- Scenario III = B $(\Delta_d = \Delta_s \text{ complex})$
- Scenario I = C $(\Delta_d \neq \Delta_s \text{ both complex})$

New Physics in radiative decays

Radiative decays as probes of New Physics

$$b \rightarrow D\gamma^{(*)}$$
 with $D = d, s$

- access to $|V_{t(d,s)}|$ within SM
- cross-check of neutral B mixing (box/penguin)
- loop processes very sensitive to NP



In terms of effective Hamiltonian main contributions from:

$$O_7 = rac{e}{16\pi^2} m_b \, ar{D} \sigma^{\mu
u} (1 + \gamma_5) F_{\mu
u} \, b$$

$$extstyle O_9 = rac{e^2}{16\pi^2} ar{D} \gamma_\mu (extstyle 1 - \gamma_5) b \ ar{\ell} \gamma_\mu \ell$$

$$O_{10}=rac{e^2}{16\pi^2}ar{D}\gamma_{\mu}(1-\gamma_5)b\ ar{\ell}\gamma_{\mu}\gamma_5\ell$$

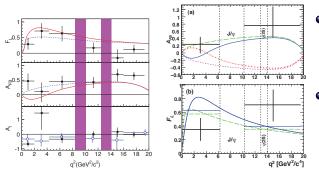
•
$$b \rightarrow s\gamma$$
: O_7 only, $b \rightarrow s\ell^+\ell^-$: $O_{7,9,10}$

New physics changes Wilson coeffs and/or adds new operators

The example of the flipped-sign solution

$$C_7 \rightarrow -C_7^{SM}$$
 ?

• No change for $B(B \to X_s \gamma)$ (not sensitive to phase of C_7)



- Indication in Belle/Babar data on $B \rightarrow K^* \ell^+ \ell^-$
- Accomodate no zero in FB asymmetry
- In "contradiction" with $B \to X_s \ell^+ \ell^-$ [Gambino, Haisch, Misiak]
- Statements dependent on structure of NP allowed in $b \to s\gamma(*)$ (all these observables involve also chirally-flipped operators)

Framework

$$\mathcal{H}_{\text{eff}} = -\frac{4G_{\text{F}}}{\sqrt{2}}\left(\textit{V}_{\textit{tb}}\textit{V}_{\textit{ts}}^{*}\mathcal{H}_{\text{eff}}^{(\textit{t})} + \textit{V}_{\textit{ub}}\textit{V}_{\textit{us}}^{*}\mathcal{H}_{\text{eff}}^{(\textit{u})}\right) + \textit{h.c.},$$

with dipole and semileptonic operators, SM and chirally-flipped

$$\mathcal{O}_{7} = \frac{e}{16\pi^{2}} m_{b} (\bar{s}\sigma_{\mu\nu}P_{R}b)F^{\mu\nu}, \qquad \mathcal{O}_{7'} = \frac{e}{16\pi^{2}} m_{b} (\bar{s}\sigma_{\mu\nu}P_{L}b)F^{\mu\nu},$$

$$\mathcal{O}_{9} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell), \qquad \mathcal{O}_{9'} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\ell),$$

$$\mathcal{O}_{10} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell), \qquad \mathcal{O}_{10'} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell),$$

 $P_{L,R} = (1 \mp \gamma_5)/2$ projection over the chiralities

• In SM, matching at $\mu_0 = 2M_W$, and down to $\mu_b = 4.8$ GeV

$$C_7^{\text{eff}}(\mu_b) = -0.29$$
 $C_9(\mu_b) = 4.07$, $C_{10}(\mu_b) = -4.31$

• Separate mixing among SM ops. and among chirally-flipped ops.

Framework, scenarios and observables

- Framework: NP in dipole and semileptonic operators (SM and chirally-flipped) through real shift in Wilson coefficients
- Scenarios (from the more specific to the more general)
 - A: NP in 7,7' only
 - B: NP in 7,7', 9,10 only
 - C: NP in 7,7',9,10,9',10' only
- Observables
 - CKM part fixed from global fit (no input from radiative decay)
 - Class-I: observables sensitive only to 7,7'
 - Class-II: observables sensitive only to 7, 7', 9, 9', 10, 10'
 - Class-III: observables sensitive to 7, 7', 9, 9', 10, 10' and other operators (scalar...)

[SDG et al., hep-ph/1104.3342]

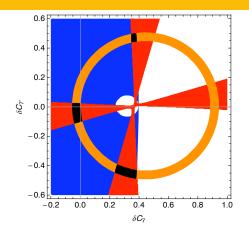
- Class-I: sensitive only to 7,7' ($b \rightarrow s\gamma$ only)
 - Branching ratio $\mathcal{B}(B \to X_s \gamma)$
 - $B \to K^* \gamma$: exclusive time-dependent CP asymmetry $S_{K^* \gamma}$
 - $B \to K^* \gamma$: isospin asymmetry $A_I(B \to K^* \gamma)$

- Class-I: sensitive only to 7,7' ($b \rightarrow s\gamma$ only)
 - Branching ratio $\mathcal{B}(B \to X_s \gamma)$
 - $B \to K^* \gamma$: exclusive time-dependent CP asymmetry $S_{K^* \gamma}$
 - $B \to K^* \gamma$: isospin asymmetry $A_l(B \to K^* \gamma)$
- Class-II: sensitive only to 7, 7', 9, 9', 10, 10'
 - $B \to K^* \ell^+ \ell^-$: integrated low- q^2 transverse asymmetry \tilde{A}_T^2 (not measured yet)

- Class-I: sensitive only to 7,7' ($b \rightarrow s\gamma$ only)
 - Branching ratio $\mathcal{B}(B \to X_s \gamma)$
 - $B \to K^* \gamma$: exclusive time-dependent CP asymmetry $S_{K^* \gamma}$
 - $B \to K^* \gamma$: isospin asymmetry $A_l(B \to K^* \gamma)$
- Class-II: sensitive only to 7,7',9,9',10,10'
 - $B \to K^* \ell^+ \ell^-$: integrated low- q^2 transverse asymmetry \tilde{A}_T^2 (not measured yet)
- Class-III: sensitive to all these and other ops. (scalar...)
 - Branching ratio $\mathcal{B}(B \to X_s I^+ I^-)$
 - $B \to K^* \ell^+ \ell^-$: integrated low- q^2 polarisation fraction \tilde{F}_L
 - ullet $B o K^* \ell^+ \ell^-$: integrated low- q^2 forward-backward asymmetry $ilde{A}_{FB}$

- Class-I: sensitive only to 7,7' ($b \rightarrow s\gamma$ only)
 - Branching ratio $\mathcal{B}(B \to X_s \gamma)$
 - $B \to K^* \gamma$: exclusive time-dependent CP asymmetry $S_{K^* \gamma}$
 - $B \to K^* \gamma$: isospin asymmetry $A_I(B \to K^* \gamma)$
- Class-II: sensitive only to 7,7',9,9',10,10'
 - $B \to K^* \ell^+ \ell^-$: integrated low- q^2 transverse asymmetry A_T^2 (not measured yet)
- Class-III: sensitive to all these and other ops. (scalar...)
 - Branching ratio $\mathcal{B}(B \to X_s I^+ I^-)$
 - $B \to K^* \ell^+ \ell^-$: integrated low- q^2 polarisation fraction F_L
 - ullet $B o K^* \ell^+ \ell^-$: integrated low- q^2 forward-backward asymmetry $ilde{A}_{FB}$
- Express all quantities in terms of $\delta C_i = C_i(\mu_b) C_i^{SM}(\mu_b)$
- Plot "naive" constraints $|X_{th}(\delta C_i) X_{exp}| \leq \Delta X_{th} + \Delta X_{exp}$
- Uncertainties ΔX_{th} from SM analysis (assumed not to be modified significantly by NP)

$\delta C_7, \delta C_{7'}$ plane : constraints at 1 σ



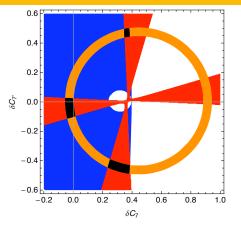
Class I observables

- A_I (blue)
- B($B \rightarrow X_s \gamma$) (orange)
- $S_{K^*\gamma}$ (red)

Combined regions (black)

- SM solution $(C_7, C_{7'}) = (C_7^{SM}, 0)$
- two non-SM solutions $(C_7, C_{7'}) = (0, \pm 0.4)$

$\delta C_7, \delta C_{7'}$ plane : constraints at 1 σ



Class I observables

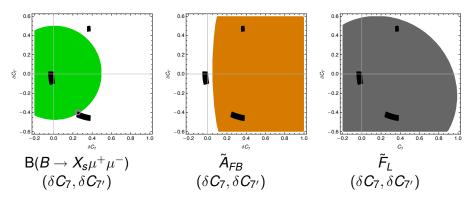
- A_I (blue)
- B($B \rightarrow X_s \gamma$) (orange)
- $S_{K^*\gamma}$ (red)

Combined regions (black)

- SM solution $(C_7, C_{7'}) = (C_7^{SM}, 0)$
- two non-SM solutions $(C_7, C_{7'}) = (0, \pm 0.4)$
- In qualitative agreement with [Bobeth et al, Hurth et al]
- A_I disfavours flipped-sign solution $(C_7, C_{7'}) \simeq (-C_7^{SM}, 0)$ \Longrightarrow Same conclusion as [Gambino, Haisch, Misiak] without using $B \to X_S \mu^+ \mu^-$ (less dependent on NP scenario)

Scenario A: class-III observables

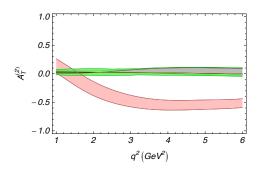
In Scenario A, no NP apart from $C_7, C_{7'}$ \Longrightarrow class-III observables constrain also the shifts $\delta C_7, \delta C_{7'}$



- ullet $B(B o X_s \mu^+ \mu^-)$ more for SM-like region [Gambino, Haisch, Misiak]
- A
 FB slightly in favour of non-SM regions

 \Longrightarrow Allowed: SM region and region around $(C_7, C_{7'}) = (0, -0.4)$

Scenario A: prediction for A_T^2

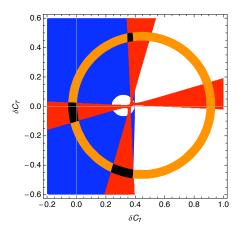


- In the SM (green, including uncertainties from form factors and estimate of $1/m_b$ -suppressed corrections)
- Under scenario A, non-SM region provides very different values of A²_T (pink)

Scenario B : class-I constraints in $(\delta C_7, \delta C_{7'})$

In Scenario B, NP in

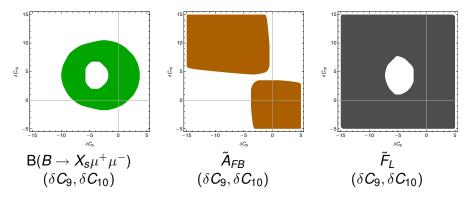
• $C_7, C_{7'}$: same constraints as before from class-I observables



Scenario B : class-III constraints in $(\delta C_9, \delta C_{10})$

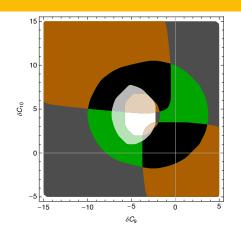
In Scenario B, NP in

- $C_7, C_{7'}$: same constraints as before from class-I observables
- C₉, C₁₀: to be fixed from class-III observables



- Small absolute values of (C₉, C₁₀) disfavoured
- Qualitative agreement with [Hurth et al.]

Scenario B: Overlap and non-SM regions

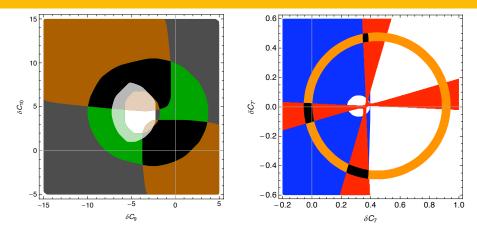


- B($B \rightarrow X_{s}\mu^{+}\mu^{-}$) (green)
- A_{FB} (brown)
- F_L (grey)

Two combined regions (black)

- SM region around $(C_9, C_{10}) = (C_9^{SM}, C_{10}^{SM})$
- non-SM region around $(C_9, C_{10}) = (-C_9^{SM}, -C_{10}^{SM})$

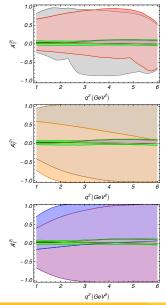
Scenario B: Overlap and non-SM regions



Both combined regions in (C_9, C_{10}) can accomodate values of $(C_7, C_{7'})$ either in the SM region or the two non-SM ones.

 \Longrightarrow Scenario B NP may alter $(C_7, C_{7'})$ and/or (C_9, C_{10}) and reproduce the experimental value $B \to X_s \mu^+ \mu^-$ at the same time

Scenario B : prediction for class-II obs. $A_T^2(q^2)$



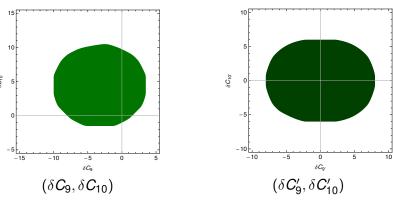
- $A_T^2(q^2)$ for $q^2 = 1 ... 6 \text{ GeV}^2$
- Different shapes for the three regions in (C₇, C_{7'})
 - $(\delta C_7, \delta C_{7'}) \simeq (0,0)$
 - $(\delta C_7, \delta C_{7'}) \simeq (0.3, -0.4)$
 - $(\delta C_7, \delta C_{7'}) \simeq (0.3, 0.4)$
 - two possibilities for SM and non-SM regions for (C₉, C₁₀)
- Very large uncertainties due to the size of the two regions for (C₉, C₁₀) (in particular from non-SM region)
- To be improved with use of q²-dependent obs.

Scenario C: class-III observables

In Scenario C, NP in

- C_7 , $C_{7'}$: same constraints as before from class-I observables
- C_9 , C_{10} , $C_{9'}$, $C_{10'}$: to be fixed from class-III observables

Actually, only B($B \rightarrow X_s \mu^+ \mu^-$) still yields constraints



 \Longrightarrow Too many possibilities to get a prediction for A_T^2

A few observables for $\Delta F = 1$

1('), 2('): tree decays		3('), 4('), 5('), 6('): penguin decays					
	Hadronic	7('), 8(')	9(')	10(')	S, P	$ u \bar{\nu}$	Mixing
$B o K^* \gamma$	×	X					
$\mathcal{S}_{\mathcal{K}^*\gamma}$		×					×
A_I	×	×					
$B o X_s \gamma$		X					
A_{CP}		\times (Im)					
$B \rightarrow K(^*)\ell^+\ell^-$	×	X	X	×	×		
A_I	×	×	X	×	×		
$m{\mathcal{A}_{FB}}, m{\mathcal{F}_L}$		×	X	×	×		
A_T^2, A_T^5		×	×	×			
$B o X_{\mathcal{S}} \ell^+ \ell^-$		X	X	×			
A_{FB}		×	×	×			
$B_s ightarrow \mu \mu$	×			×	×		
$B \rightarrow K(^*) u ar{ u}$	×					×	
F_L						×	
$K \to \pi \nu \bar{\nu}$						×	

Outlook

Flavour dynamics undergoing transition from SM test to NP searches

- Flavour dynamics well tested, and in good overall agreement with SM expectations . . . but a few itches ($B \to \tau \nu$, $B_{d,s}$ mixing)
- Start exploring flavour constraints on NP in a bottom-up approach
- ullet With the help of $\mathcal{H}_{\it{eff}}$, separating high and low energies elegantly
- And resumming large QCD corrections along the way

Outlook

Flavour dynamics undergoing transition from SM test to NP searches

- Flavour dynamics well tested, and in good overall agreement with SM expectations . . . but a few itches ($B \to \tau \nu$, $B_{d,s}$ mixing)
- Start exploring flavour constraints on NP in a bottom-up approach
- ullet With the help of $\mathcal{H}_{\it{eff}}$, separating high and low energies elegantly
- And resumming large QCD corrections along the way

Illustration with $\Delta F = 2$ transitions and $b \rightarrow s\gamma(*)$

- "Model-independent" approach still restricted to some framework
- Importance of defining scenarios and identifying observables with sensitivities to different operators
- As well as exploiting q^2 -dependence of observables
- Impact on predictions, as illustrated by $a_{SL}^d a_{SL}^s$, A_T^2 ...

Outlook

Flavour dynamics undergoing transition from SM test to NP searches

- Flavour dynamics well tested, and in good overall agreement with SM expectations . . . but a few itches ($B \to \tau \nu$, $B_{d,s}$ mixing)
- Start exploring flavour constraints on NP in a bottom-up approach
- ullet With the help of $\mathcal{H}_{\it{eff}}$, separating high and low energies elegantly
- And resumming large QCD corrections along the way

Illustration with $\Delta F = 2$ transitions and $b \rightarrow s\gamma(*)$

- "Model-independent" approach still restricted to some framework
- Importance of defining scenarios and identifying observables with sensitivities to different operators
- As well as exploiting q^2 -dependence of observables
- Impact on predictions, as illustrated by $a_{SL}^d a_{SL}^s$, A_T^2 ...

More to come from next generation of flavour facitilies!

Back-up

Flavour and new physics

- Standard Model Flavour Puzzle
 Why is there a hierarchy of small parameters?
- New Physics Flavour Puzzle
 If new physics around 1 TeV, why so little seen in current flavour physics? Why Flavour-Changing Neutral Currents are so small?
- What about baryon asymmetry?
 Not enough CP for baryogenesis; flavour matters in leptogenesis

Flavour and new physics

- Standard Model Flavour Puzzle
 Why is there a hierarchy of small parameters?
- New Physics Flavour Puzzle
 If new physics around 1 TeV, why so little seen in current flavour physics? Why Flavour-Changing Neutral Currents are so small?
- What about baryon asymmetry?
 Not enough CP for baryogenesis; flavour matters in leptogenesis

Many different extensions of the SM

- Fermion content (more matter)
- Gauge boson content (more interactions)
- Different mechanism for ew symmetry breaking (more or no Higgs)
- Additional symmetries
- Additional dimensions

Supersymmetry, grand-unified, left-right symmetric, extra-dim, sequential models, 4th gen, Higgs multiplet, composite Higgs, little Higgs, Higgsless...

$|V_{ub}|$ inclusive and exclusive

Two ways of getting $|V_{ub}|$:

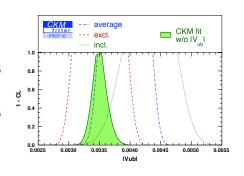
- Inclusive : $b \rightarrow u\ell\nu$ + Operator Product Expansion
- Exclusive : $B \rightarrow \pi \ell \nu$ + Form factors

$$|V_{ub}|_{inc} = 4.32^{+0.21}_{-0.24} \pm 0.45$$

 $|V_{ub}|_{exc} = 3.51 \pm 0.10 \pm 0.46$

$$|V_{ub}|_{ave} = 3.92 \pm 0.09 \pm 0.45$$

with all values $\times 10^{-3}$



- Discrepancy depends on statistical treatment
- Same problem for $|V_{cb}|$

From Higgs to Cabibbo-Kobayashi-Maskawa

ullet In $\mathcal{L}_{\textit{Higgs}}$, general Yukawa interaction between Higgs and quarks

$$ar{Q}_L^i Y_D^{ik} d_R^k \phi + ar{Q}_L^i Y_U^{ik} u_R^k \phi + h.c. + \dots$$
 $Q_L = (u_L, d_L)$

• Vacuum expectation value for Higgs $\langle \phi \rangle \neq 0$ yields mass matrices

$$ar{d}_L^i M_D^{ik} d_R^k + ar{u}_L^i M_U^{ik} u_R^k + \dots$$

Diagonalise the mass matrices to get mass eigenstates

$$m_q = \frac{y_q \langle \phi \rangle}{\sqrt{2}}$$
 $M_D = \operatorname{diag}(m_d, m_s, m_b)$ $M_U = \operatorname{diag}(m_u, m_c, m_t)$

In mass eigenstates, charged currents involve rotation (CKM)

$$J_W^\mu = ar{u}_L \gamma^\mu d_L
ightarrow ar{u}_L V \gamma^\mu d_L$$

From Higgs to Cabibbo-Kobayashi-Maskawa

ullet In $\mathcal{L}_{\textit{Higgs}}$, general Yukawa interaction between Higgs and quarks

$$ar{Q}_L^i Y_D^{ik} d_R^k \phi + ar{Q}_L^i Y_U^{ik} u_R^k \phi + h.c. + \dots$$
 $Q_L = (u_L, d_L)$

• Vacuum expectation value for Higgs $\langle \phi \rangle \neq 0$ yields mass matrices

$$ar{d}_L^i M_D^{ik} d_R^k + ar{u}_L^i M_U^{ik} u_R^k + \dots$$

Diagonalise the mass matrices to get mass eigenstates

$$m_q = \frac{y_q \langle \phi \rangle}{\sqrt{2}}$$
 $M_D = \operatorname{diag}(m_d, m_s, m_b)$ $M_U = \operatorname{diag}(m_u, m_c, m_t)$

In mass eigenstates, charged currents involve rotation (CKM)

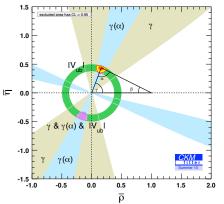
$$J_W^\mu = ar{u}_L \gamma^\mu d_L
ightarrow ar{u}_L V \gamma^\mu d_L$$

Flavour physics deeply connected with the Yukawa interactions of Higgs and fermions

Separating observables for $\Delta F = 2$

Observables not affected by NP, used to fix CKM:

$$|V_{ud}|, |V_{us}|, |V_{ub}|, |V_{cb}|, \gamma \text{ and } \gamma(\alpha) \equiv \pi - \alpha - \beta \text{ (}\phi_{B_d} \text{ cancels)}$$



Observables affected by NP, used to determine Δ_d , Δ_s

- Neutral-meson oscillation Δm_d , Δm_s
- Lifetime difference $\Delta\Gamma_d$
- Time-dep asymmetries related to ϕ_{B_d} , ϕ_{B_s}
- Semileptonic asymmetries a^d_{SL}, a^s_{SL}, A_{SL}
- α (interference between decay and mixing)

Some of the inputs for $\Delta F = 2$

$$\Delta\Gamma_{s} = f[f_{Bs}, B, \tilde{B}_{S}; \mu, m_{b}^{pow}, B_{1/m_{b}} \dots]$$

$$\Delta\Gamma_{s}/\Delta M_{s} = f[\tilde{B}_{S}/B; B_{1/m_{b}}, m_{b}^{pow}, \mu, \bar{m}_{c} \dots]$$

$$a_{SL}^{s} = f[\tilde{B}_{S}/B; |V_{ub}/V_{cb}|, \gamma, \mu, \bar{m}_{c}, B_{1/m_{b}} \dots]$$

- B_d, B_s, f_{B_d}, f_{B_d} parameters: average of unquenched 2 and 2+1 lattice estimates
- Bag parameters for scalar operators from quenched lattice estimate [Becirevic et al., 2002]

$$\tilde{B}_{S}^{\prime S}(m_b)/\tilde{B}_{S}^{\prime d}(m_b) = 1.00 \pm 0.03 \quad \tilde{B}_{S}^{\prime S}(m_b) = 1.40 \pm 0.13$$

• $1/m_b$ suppressed operators: bag parameters (vacuum insertion approximation) and power correction scale

$$B_{Ri}(m_b) = 1.0 \pm 0.5$$
 $m_b^{\text{pow}} = 4.70 \pm 0.10$

• charm quark mass from $\sigma(e^+e^-\to c\bar{c})$ sum rules to 3- and 4-loops [Steinhauser and Kühn 2001-04, Jamin and Hoang 2004]

Some of the inputs for radiative decays

$\mu_b = 4.8 \text{ GeV } [/2 \rightarrow \times 2]$	$\mu_0 = 2M_W [/2 \rightarrow \times 2]$
$\sin^2\theta_W=0.2313$	
$\alpha_{em}(M_Z) = 1/128.940$	$\alpha_s(M_Z) = 0.1184 \pm 0.0007$
$m_t^{ m pole} = 173.3 \pm 1.1 \ { m GeV}$	$m_b^{1S} = 4.68 \pm 0.03 \mathrm{GeV}$
$m_c^{\overline{MS}}(m_c) = 1.27 \pm 0.09 \text{ GeV}$	$m_s^{\overline{MS}}(2 \text{ GeV}) = 0.101 \pm 0.029 \text{ GeV}$
$\lambda_{\it CKM} = 0.22543 \pm 0.0008$	$A_{\it CKM} = 0.805 \pm 0.020$
$ar{ ho} = 0.144 \pm 0.025$	$ar{\eta} = 0.342 \pm 0.016$
${\cal B}(B o X_c e ar{ u}) = 0.1061 \pm 0.00017$	$C = 0.58 \pm 0.016$
$\lambda_2 = 0.12 \mathrm{GeV}^2$	
$\Lambda_h = 0.5 \text{ GeV}$	$f_B = 0.200 \pm 0.025 \mathrm{GeV}$
$f_{K^*, } = 0.220 \pm 0.005 \mathrm{GeV}$	$f_{K^*,\perp}(2 \text{ GeV}) = 0.163 \pm 0.008 \text{ GeV}$
$\xi_{\perp}(0) = 0.31^{+0.20}_{-0.10}$	$\xi_{ }(0) = 0.10 \pm 0.03$
$a_{1, ,\perp}(2 \text{ GeV}) = 0.03 \pm 0.03$	$a_{2, ,\perp}(2 \text{ GeV}) = 0.08 \pm 0.06$
$\lambda_B(\mu_h) = 0.51 \pm 0.12 { m GeV}$	
$f_{B_s} = 0.2358 \pm 0.0089 \mathrm{GeV}$	$ au_{B_s} = 1.472 \pm 0.026 \text{ ps}$

Inputs of the SM global fit

CKM matrix within a frequentist framework ($\simeq \chi^2$ minimum) + specific scheme for theory errors (Rfit)

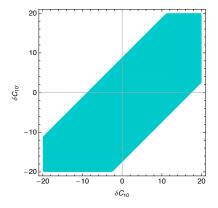
data = weak \otimes QCD

⇒Need for hadronic inputs (often lattice) with good theoretical control

$ V_{ud} $	superallowed β decays	PRC79, 055502 (2009)
$ V_{us} $	$K_{\ell 3}$ (Flavianet)	$f_{+}(0) = 0.963 \pm 0.003 \pm 0.005$
$\epsilon_{\mathcal{K}}$	PDG 08	$\hat{B}_{K} = 0.724 \pm 0.004 \pm 0.067$
$ V_{ub} $	inclusive and exclusive	$ V_{ub} \cdot 10^3 = 3.92 \pm 0.09 \pm 0.45$
$ V_{cb} $	inclusive and exclusive	$ V_{cb} \cdot 10^3 = 40.89 \pm 0.38 \pm 0.59$
Δm_d	last WA B_d - \bar{B}_d mixing	$B_{B_s}/B_{B_d}=1.01\pm0.01\pm0.03$
Δm_s	last WA B_s - \bar{B}_s mixing	$B_{B_s} = 1.28 \pm 0.02 \pm 0.03$
β	last WA $J/\psi K^{(*)}$	•
α	last WA $\pi\pi, \rho\pi, \rho\rho$	isospin
γ	last WA $B \rightarrow D^{(*)}K^{(*)}$	GLW/ADS/GGSZ
B o au u	$(1.68 \pm 0.31) \cdot 10^{-4}$	$f_{B_s}/f_{B_d}=1.209\pm0.007\pm0.023$
	,	$f_{B_s} = 231 \pm 3 \pm 15 \text{ MeV}$

Constraint on $C_{10}, C_{10'}$ from $B_s \to \mu^+ \mu^-$

$$\mathcal{B}(\bar{B}_s \to \mu^+ \mu^-)|_{\rm axial} = \frac{G_F^2 \alpha^2}{16\pi^3} f_{B_s}^2 m_{B_s} \tau_{B_s} |V_{tb} V_{ts}^*|^2 m_\mu^2 \sqrt{1 - \frac{4m_\mu^2}{m_{B_s}^2}} |C_{10} - C_{10'}|^2$$



Using our inputs, we get

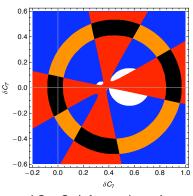
$${\cal B}(\bar{B}_s\to\mu^+\mu^-)^{\rm SM}=(3.44{\pm}0.32){\cdot}10^{-9}$$

one order of magnitude smaller than 90% CL exp bound

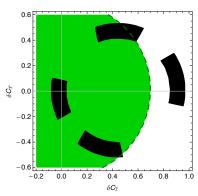
$$\mathcal{B}(\bar{B}_s \to \mu^+ \mu^-)^{exp} < 3.2 \cdot 10^{-8}$$
.

and only weak constraints on C_{10} , $C_{10'}$

At two sigmas : $(C_7, C_{7'})$ and scenario A

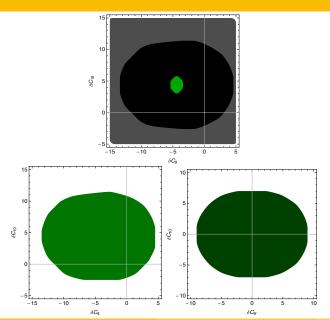


 $(C_7, C_{7'})$ from class-I



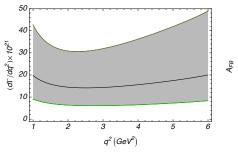
 $B \rightarrow X_s \mu^+ \mu^-$ in scenario A

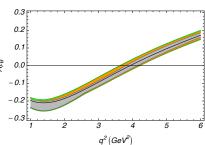
At two sigmas: scenario B and C



- Scenario B (up): $B \rightarrow X_S \mu^+ \mu^-$ and \tilde{F}_I
- Scenario C (down): $B \rightarrow X_S \mu^+ \mu^-$

SM prediction for $B o K^* \ell^+ \ell^-$: $d\Gamma/dq^2$ and A_{FB}





Standard Model values

In the SM, NNLO in MS-bar with fully anticommuting γ_5 including electromagnetic corrections [Chetyrkin, Misiak and Münz, Huber et al.]

$C_1(\mu_b)$	$C_2(\mu_b)$	$C_3(\mu_b)$	$C_4(\mu_b)$	$C_5(\mu_b)$
-0.263	1.011	-0.006	-0.081	0.000
$C_6(\mu_b)$	$C_7^{ m eff}(\mu_b)$	$C_8^{ m eff}(\mu_b)$	$C_9(\mu_b)$	$C_{10}(\mu_b)$
0.001	-0.292	-0.166	4.075	-4.308

- High-scale $\mu_0 = 2M_W$ [uncertainty: varied from M_W to $4M_W$]
- ullet Low-scale $\mu_b=$ 4.8 GeV [uncertainty: varied from 2.4 to 9.6 GeV]

For the chirally-flipped operators, we have the SM values

$$C_{7'}^{SM} = \frac{m_s}{m_b} C_7^{SM}, \qquad C_{9',10'}^{SM} = 0$$

Form factors for $B \to K^* \gamma$

- full q^2 -range using light-cone sum rules
- large recoil for NLO QCD factorisation with soft form factors $\xi_{\perp,||}$ + hard gluon corrections (+ 10% Λ/m_b corrections)

 \implies we use the latter to treat exclusive observables for q^2 =1-6 GeV², extracting 2 soft form factors from LCSR determinations

$$\xi_{\perp}(q^2) = \frac{m_B}{m_B + m_{K^*}} \, V(q^2), \quad \xi_{\parallel}(q^2) = \frac{m_B + m_{K^*}}{2E_{K^*}} A_1(q^2) - \frac{m_B - m_{K^*}}{m_B} A_2(q^2)$$

Form factors for $B \to K^* \gamma$

- full q^2 -range using light-cone sum rules
- large recoil for NLO QCD factorisation with soft form factors $\xi_{\perp,\parallel}$ + hard gluon corrections (+ 10% Λ/m_b corrections)

 \implies we use the latter to treat exclusive observables for $q^2=1-6$ GeV². extracting 2 soft form factors from LCSR determinations

$$\xi_{\perp}(q^{2}) = \frac{m_{B}}{m_{B}+m_{K^{*}}}V(q^{2}), \quad \xi_{\parallel}(q^{2}) = \frac{m_{B}+m_{K^{*}}}{2E_{K^{*}}}A_{1}(q^{2}) - \frac{m_{B}-m_{K^{*}}}{m_{B}}A_{2}(q^{2})$$
5 other form factors then consistent, e.g. $T_{1}^{B\to K^{*}}$
• orange : full form factor from LCSR

[Khodjamirian et all • grey lines : NLO QCD factorisation [Beneke et al.] using our $\xi_{\perp}(q^{2})$

$$\sum_{E_{K*}} A_1(q') = \sum_{m_B} A_2(q')$$
5 other form factors then

consistent, e.g. $T_1^{B\to K^*}$

orange : full form factor from LCSR

[Khodjamirian et al]

grey lines : NLO QCD factorisation [Beneke et al.] using our $\xi_{\perp}(q^2)$

Class-I observables: inclusive $\mathcal{B}(\bar{B} \to X_s \gamma)$

Class-I : only depending on $C_7, C_{7'}$, related to radiative decays [Misiak, Gambino, Steinhauser...]

$$\begin{array}{lcl} \mathcal{B}(\bar{B}\to X_{s}\gamma)^{exp}_{E_{\gamma}>1.6\,\mathrm{GeV}} &=& (3.55\pm0.24\pm0.09)\times10^{-4} \\ \mathcal{B}(\bar{B}\to X_{s}\gamma)^{th}_{E_{\gamma}>1.6\,\mathrm{GeV}} &=& \left[a_{(0,0)}+a_{(7,7)}\left[(\delta C_{7})^{2}+(\delta C_{7'})^{2}\right]+\right. \\ &\left.\left.+a_{(0,7)}\,\delta C_{7}+a_{(0,7')}\,\delta C_{7'}\right]\times10^{-4} \\ \mathcal{B}(\bar{B}\to X_{s}\gamma)^{SM}_{E_{\gamma}>1.6\,\mathrm{GeV}} &=& (3.15\pm0.23)\times10^{-4} \end{array}$$

Class-I observables: inclusive $\mathcal{B}(\bar{B} \to X_s \gamma)$

Class-I : only depending on $C_7, C_{7'}$, related to radiative decays [Misiak, Gambino, Steinhauser...]

$$\mathcal{B}(\bar{B} \to X_{s}\gamma)^{\text{exp}}_{E_{\gamma}>1.6\,\text{GeV}} = (3.55 \pm 0.24 \pm 0.09) \times 10^{-4}$$

$$\mathcal{B}(\bar{B} \to X_{s}\gamma)^{\text{th}}_{E_{\gamma}>1.6\,\text{GeV}} = \begin{bmatrix} a_{(0,0)} + a_{(7,7)} \left[(\delta C_{7})^{2} + (\delta C_{7'})^{2} \right] + \\ + a_{(0,7)} \delta C_{7} + a_{(0,7')} \delta C_{7'} \right] \times 10^{-4}$$

$$\mathcal{B}(\bar{B} \to X_{s}\gamma)^{\text{SM}}_{E_{\gamma}>1.6\,\text{GeV}} = (3.15 \pm 0.23) \times 10^{-4}$$

SM value [a_(0,0)] expressed as

$$\mathcal{B}(B o X_s \gamma)_{E_\gamma > E_0}^{SM} = \mathcal{B}(B o X_c e \bar{\nu}) \left| rac{V_{is}^* V_{tb}}{V_{cb}} \right|^2 rac{6lpha_{
m em}}{\pi} [P(E_0) + N(E_0)]$$
 $P(E_0) = \sum_{i,j=1...8} C_i^{
m eff}(\mu) C_j^{
m eff*}(\mu) K_{ij}(E_0,\mu)$

- left- and right-handed polarisations add up incoherently
 - $a_{(7,7)}=a_{(7',7')}$ same structure for C_7 and $C_{7'}$ $\gamma_5 \rightarrow -\gamma_5$
 - ullet $a_{(0,7)}
 eq a_{(0,7')}$ since no 4-quark chirally flipped operators
- numerical a's reproducing [Misiak, Steinhauser, Haisch]

Class-I observables: isospin asymmetry in $B \to K^* \gamma$

[Kagan and Neubert...]

$$A_{I}(B \to K^{*}\gamma) = \frac{\Gamma(\bar{B}^{0} \to \bar{K}^{*0}\gamma) - \Gamma(B^{-} \to K^{*-}\gamma)}{\Gamma(\bar{B}^{0} \to \bar{K}^{*0}\gamma) + \Gamma(B^{-} \to K^{*-}\gamma)}$$

- NLO QCD factorisation: isospin asymmetry from nonfactorisable contributions where spectator quark emits the photon
- from 4-quark and chromomagnetic operators
- thus no change once chirally-flipped operators included, apart from normalisation to isospin-averaged branching ratio

Class-I observables: isospin asymmetry in $B \to K^* \gamma$

[Kagan and Neubert...]

$$A_{I}(B \to K^{*}\gamma) = \frac{\Gamma(\bar{B}^{0} \to \bar{K}^{*0}\gamma) - \Gamma(B^{-} \to K^{*-}\gamma)}{\Gamma(\bar{B}^{0} \to \bar{K}^{*0}\gamma) + \Gamma(B^{-} \to K^{*-}\gamma)}$$

- NLO QCD factorisation: isospin asymmetry from nonfactorisable contributions where spectator quark emits the photon
- from 4-quark and chromomagnetic operators
- thus no change once chirally-flipped operators included, apart from normalisation to isospin-averaged branching ratio

$$\begin{array}{lcl} A_{l}(B \to K^{*}\gamma)^{exp} & = & 0.052 \pm 0.026 \\ A_{l}(B \to K^{*}\gamma)^{th} & = & c \times \frac{\sum_{k} d_{k}(\delta C_{7})^{k}}{\sum_{k,l} e_{k,l}(\delta C_{7})^{k}(\delta C_{7'})^{l}} \pm \delta c \,. \\ A_{l}(B \to K^{*}\gamma)^{SM} & = & 0.041 \pm 0.025 \end{array}$$

• c, d, e determined numerically,

Class-I observables: $B \rightarrow K^* \gamma$ CP-asymmetry

[Beneke Feldmann Seidel, Ball and Zwicky]

$$\frac{\Gamma(\bar{B}^0(t)\to\bar{K}^{*0}\gamma)-\Gamma(B^0(t)\to K^{*0}\gamma)}{\Gamma(\bar{B}^0(t)\to\bar{K}^{*0}\gamma)+\Gamma(B^0(t)\to K^{*0}\gamma)}=S_{K^*\gamma}\sin(\Delta m_B t)-C_{K^*\gamma}\cos(\Delta m_B t)$$

- Probe of photon helicity $S_{\mathcal{K}^*\gamma} = \frac{2\operatorname{Im}\left[e^{-2i\beta}\left(\mathcal{A}_L^*\bar{\mathcal{A}}_L + \mathcal{A}_R^*\bar{\mathcal{A}}_R\right)\right]}{|\mathcal{A}_L|^2 + |\mathcal{A}_R|^2 + |\bar{\mathcal{A}}_L|^2 + |\bar{\mathcal{A}}_R|^2}$
- Cam be determined at NLO in QCD factorisation. At LO.

$$S_{K^{*}\gamma}^{(\mathrm{LO})} = \frac{-2\left|C_{7'}/C_{7}\right|}{1+\left|C_{7'}/C_{7}\right|^{2}}\sin\left(2\beta - \arg\left(C_{7}C_{7'}\right)\right)} \\ \text{[Grinstein et al, Bobeth et al]}$$

Class-I observables: $B \to K^* \gamma$ CP-asymmetry

[Beneke Feldmann Seidel, Ball and Zwicky]

$$\frac{\Gamma(\bar{B}^0(t)\to\bar{K}^{*0}\gamma)-\Gamma(B^0(t)\to K^{*0}\gamma)}{\Gamma(\bar{B}^0(t)\to\bar{K}^{*0}\gamma)+\Gamma(B^0(t)\to K^{*0}\gamma)}=S_{K^*\gamma}\sin(\Delta m_B t)-C_{K^*\gamma}\cos(\Delta m_B t)$$

- Probe of photon helicity $S_{\mathcal{K}^*\gamma} = \frac{2\operatorname{Im}\left[e^{-2i\beta}\left(\mathcal{A}_L^*\bar{\mathcal{A}}_L + \mathcal{A}_R^*\bar{\mathcal{A}}_R\right)\right]}{|\mathcal{A}_L|^2 + |\mathcal{A}_R|^2 + |\bar{\mathcal{A}}_L|^2 + |\bar{\mathcal{A}}_R|^2}$
- Cam be determined at NLO in QCD factorisation. At LO.

$$S_{K^{*}\gamma}^{(\mathrm{LO})} = \frac{-2\left|C_{7'}/C_{7}\right|}{1+\left|C_{7'}/C_{7}\right|^{2}}\sin\left(2\beta - \arg\left(C_{7}C_{7'}\right)\right)} \\ \text{[Grinstein et al, Bobeth et al]}$$

$$S_{K^*\gamma}^{\text{exp}} = -0.16 \pm 0.22$$

$$S_{K^*\gamma} = f_{-\delta_f^d}^{+\delta_f^u} + \frac{\sum_{k,l} g_{k,l} (\delta C_7)^k (\delta C_{7l})^l}{\sum_{k,l} h_{k,l} (\delta C_7)^k (\delta C_{7l})^l}$$

$$S_{K^*\gamma}^{SM} = -0.30 \pm 0.01$$

• f, g, h fitting coefficients and uncertainties determined numerically

Class-II observables: A_T^2 asymmetry

Class-II: depending only on dipole and semileptonic operators

$$B o K^* \ell^+ \ell^-$$
 asymmetry $A_T^2(q^2) = rac{|A_\perp|^2 - |A_\parallel|^2}{|A_\perp|^2 + |A_\parallel|^2}$, [Kruger and Matias]

- $B \to K^* \ell^+ \ell^-$ expressed in terms of 7 spin amplitudes
- A_{\perp} and A_{\parallel} depend only on $C_{7,7',9,9',10,10'}$ (no tensors or scalars)
- can be determined from $d\Gamma/d\phi$
- weakly sensitive to soft form factors (only at NLO QCDF)
- not measured yet, but potential to discriminate among scenarios

Class-II observables: A_T^2 asymmetry

Class-II: depending only on dipole and semileptonic operators

$$B o K^* \ell^+ \ell^-$$
 asymmetry $A_T^2(q^2) = \frac{|A_\perp|^2 - |A_\parallel|^2}{|A_\perp|^2 + |A_\parallel|^2}$, [Kruger and Matias]

- $B \to K^* \ell^+ \ell^-$ expressed in terms of 7 spin amplitudes
- ullet A_{\perp} and A_{\parallel} depend only on $C_{7,7',9,9',10,10'}$ (no tensors or scalars)
- can be determined from $d\Gamma/d\phi$
- weakly sensitive to soft form factors (only at NLO QCDF)
- not measured yet, but potential to discriminate among scenarios

At low q^2 , at NLO QCD factorisation $A_T^2(q^2) = A_T^{(2),\,CV}(q^2)_{-\delta_d(q^2)}^{+\delta_u(q^2)}$ with fitting q^2 -polynomials for errors δ_u, δ_d and central value

$$A_T^{(2), CV}(q^2) = \frac{\sum_{i=0,7,7',9,9',10,10'} \sum_{j=i,..10'} F_{(i,j)}(q^2) \delta C_i \delta C_j}{\sum_{i=0,7,7',9,9',10,10'} \sum_{j=i,..10'} G_{(i,j)}(q^2) \delta C_i \delta C_j}$$

[$\delta C_0 = 1$ to deal with constant, linear and quadratic terms]

Class-III observables: $\bar{B} \to X_s \, \mu^+ \, \mu^-$

Class-III: depending on dipole and semileptonic operators, but also others (scalar, tensors) —>most of semileptonic observables

ullet $ar{B}
ightarrow X_{\mathcal{S}} \, \mu^+ \, \mu^-$ at low q^2 [1-6 GeV²]

$$\mathcal{B}(\bar{B} \to X_{s} \, \mu^{+} \, \mu^{-})^{exp} = (1.60 \pm 0.50) \times 10^{-6}$$

$$\mathcal{B}(B \to X_{s} \mu^{+} \mu^{-}) = 10^{-7} \times \sum_{i,j=0,7,7',9,9',10,10'} b_{(i,j)} \delta C_{i} \delta C_{j}$$

$$\mathcal{B}(\bar{B} \to X_{s} \, \mu^{+} \, \mu^{-})^{SM} = (1.59 \pm 0.15) \times 10^{-6}$$

- δC_7 , δC_9 , δC_{10} -only contributions known up to NNLO including e.m. corrections [Huber et al]
- $\delta C_{7'}$, $\delta C_{9'}$, $\delta C_{10'}$ -only contributions with similar structure ($\gamma_5 \rightarrow -\gamma_5$)
- crossed terms (primed-unprimed) only at LO in α_s , and are suppressed by m_s/m_b [Guetta Nardi]
- b coefficients determined numerically agreing with [Huber et al]

Class-III observables: \tilde{A}_{FB} and \tilde{F}_L

Average forward-backward asymmetry \tilde{A}_{FB} and longitudinal polarisation \tilde{F}_L over low $q^2 = 1$ -6 GeV²

$$rac{dA_{\mathrm{FB}}}{dq^2} = \left(\int_0^1 d(\cos\theta_I) rac{d^2\Gamma}{dq^2 d\cos\theta_I} - \int_{-1}^0 \ldots \right) / rac{d\Gamma}{dq^2} \qquad F_{\mathrm{L}} = |A_0|^2 / rac{d\Gamma}{dq^2}$$

Class-III observables: \tilde{A}_{FB} and \tilde{F}_L

Average forward-backward asymmetry \tilde{A}_{FB} and longitudinal polarisation \tilde{F}_L over low $q^2=$ 1-6 GeV²

$$rac{dA_{\text{FB}}}{dq^2} = \left(\int_0^1 d(\cos\theta_I) rac{d^2\Gamma}{dq^2 d\cos\theta_I} - \int_{-1}^0 \ldots
ight) / rac{d\Gamma}{dq^2} \qquad F_{\text{L}} = |A_0|^2 / rac{d\Gamma}{dq^2}$$

$$ilde{A}_{FB}^{ ext{exp}} = 0.33_{-0.24}^{+0.22} \qquad ilde{F}_L^{ ext{exp}} = 0.60_{-0.19}^{+0.18}$$

$$\tilde{\textit{A}}_{\textit{FB}} = \frac{\int_{1 \text{GeV}^2}^{6 \text{GeV}^2} \sum_{i=0,7,7',9,9',10,10'} \sum_{j=i,..10'} \textit{H}_{(i,j)}(\textit{q}^2) \delta \textit{C}_i \delta \textit{C}_j \textit{d}\textit{q}^2}{\int_{1 \text{GeV}^2}^{6 \text{GeV}^2} \sum_{i=0,7,7',9,9',10,10'} \sum_{j=i,..10'} \textit{I}_{(i,j)}(\textit{q}^2) \delta \textit{C}_i \delta \textit{C}_j \textit{d}\textit{q}^2} \\ -\tilde{\delta}_{\textit{d}}$$

computed at NLO in QCD factorisation [Beneke and Feldmann] with fitting q^2 -polynomials for central value and errors (same for \tilde{F}_L)

$$ilde{A}_{FB}^{SM} = 0.022_{-0.028}^{+0.028} \qquad ilde{F}_{L}^{SM} = 0.732_{-0.031}^{+0.021}$$