STORY OF A HJETS MASS BUMP

G. Watts (UW/Seattle)

CPPM Seminar 27/6/2011

RISCLAIMER

The Big Issues

Dark Matter

EWSB

Where is the Higgs?

Coupling,

Beyond the Standard Model

G. Watts (UW/Seattle)

First evidence seen with about $\mathbf{1} f b^{-1}$ of WW and WZ to jets

CDF has measured the σ (2010)

Both experiments working on updates...

When...

G. Watts (UW/Seattle)

December 2010

Measurement of ww + wz production cross section and study of the dijet mass spectrum in the Inu + jets final state at CDF. Viviana Cavaliere (Siena)

A few theorists find the thesis...

April 2011Invariant Mass Distribution of Jet Pairs Produced in
Association with a W boson in ppbar Collisions at sqrt(s) =
1.96 TeV, arXiv:1104.0699

(60 citations)

June 2011 Study of the dijet invariant mass distribution in $p\overline{p} \rightarrow W(\rightarrow l\nu + jj)$ final states at $\sqrt{s} = 1.96$ TeV. arXiv:1106.1921

(1 citations)

G. Watts (UW/Seattle)

Are they compatible?

THE TEVATRON

1.96 TeV \sqrt{s} > 10 fb^{-1} delivered 132 ns bunch spacing Run II started March 2001 1.5 MJ beam energy 70 pb^{-1} delivered per week

Improve M_t measurement Improve M_W measurement Find B_s mixing Search for the Higgs Search for New Phenomena

Main Injector Recycler

PEAK LUMINOSITY

THE DETECTORS

Silicon Tracking $|\eta| < 3$ Scintillating Fiber Tracker 1.9 T B Field, $|\eta| < 1.7$ LAr/DU Calorimeter $|\eta| < 2$ Jet Energy Scale 1-2%

Silicon Tracking $|\eta| < 2 - 2.5$ Open Drift Cell Tracker 1.4 T B Field, $|\eta| < 1.1$ Pb/Cu/Scint Calorimeter $|\eta| < 3.2$ Jet Energy Scale 2-3%

G. Watts (UW/Seattle)

THE DØ ANALYSIS

DØ's Normal Analysis opens up cuts to increase acceptance Data/MC agreement

Copy CDF's cuts => Eliminate most reweightings

$$\bigstar \begin{array}{c} \mathsf{Model} \ WX \to l\nu jj \text{ as CDF} \\ \mathsf{model's it} \end{array} \xrightarrow{\mathsf{How big an excess does our} \\ \mathsf{data support?} \end{array}$$

THE $WX \rightarrow l\nu jj$ **SEARCH**

SELECTING THE W ightarrow l u

Electron

 $p_T \ge 20$ GeV, $|\eta| < 1.0$ Isolation: track and EM shower Electron Shower Shape Requirements

Muon

 $p_T \ge 20$ GeV, $|\eta| < 1.0$ Hits in all three muon layers Isolation: track and Calorimeter $p_T \ge 20$ GeV, $|\eta| < 1.0$ Isolation: Calorimeter

(Isolation: kill off Heavy Flavor Decays)

 $p_T \ge 20$ GeV, $|\eta| < 1.0$ Isolation: Calorimeter

SELECTING THE W ightarrow l u

The Missing E_T Missing $E_T > 25$ GeV

 M_T^W Cuts

 $30 < M_T^W < 200$ GeV Reject events with more than one reconstructed lepton

Missing $E_T > 25$ GeV

 $30 < M_T^W$ Reject events with second loose lepton an $76 < M_{ll} < 106$ GeV Reject events with good lepton $p_T > 10$ GeV

SELECTING THE W ightarrow l u

THE JETS

CDF

Reconstruction

DØ iterative mid-point cone algorithm R = 0.5Clean up cuts: hadronic, noisy cell removal

Vertex Confirmation: >2 tracks from IP

Selection

 $p_T > 30 \text{ GeV} \ |\eta| < 2.5$

 $p_T^{jj} > 40$ GeV, $|\Delta \eta^{jj}| < 2.5$ $\Delta \phi > 0.4$ missing E_T and high p_T jet Exactly 2 good jets Fixed cone algorithm R = 0.4

 $p_T > 30 \text{ GeV}$ $|\eta| < 2.4$ Jets with μ or e R < 0.52 removed $p_T^{jj} > 40 \text{ GeV}, |\Delta \eta^{jj}| < 2.5$ $\Delta \phi > 0.4$ missing E_T and high p_T jet Exactly 2 good jets

G. Watts (UW/Seattle)

JET ENERGY SCALE

Both use $\gamma + jets$ and dijet events Correct for response, out of cone showering, overlap/pileup

Corrections similar in size

G. Watts (UW/Seattle)

 M_{II}

MODELING THE SM BACKGROUND

GENERATORS

Pythia: WW, WZ, ZZ COMPHEP: Single Top ALPGEN + Pythia: $t\bar{t}$, W+Jets, Z+Jets CDF: Pythia: WW, WZ, ZZ, $t\bar{t}$, single top ALPGEN+Pythia: W+Jets, Z+Jets

	DØ	CDF
PDF Set	CTEQ6L1	CTEQ5L
Pythia	6.409	6.326
Pythia Tune	DØ Tune A (tune A, PDF corrected)	Tune A
ALPGEN	V2.11_wcfix	V2.1

Private GEANT3 based detector models + reconstruction software!

Our handling of systematic errors for the generators is almost certainly different as well.

REWEIGHTINGS

Luminosity Profile Interaction Region Profile

Detector Based Reweighting's

 $\mathbf{Z} p_T$ reweighting

We checked does not affect the dijet mass distribution

Also correct MC for object ID e.g. jet finding efficiency is too good

GETTING W+JETS RIGHT

We have found region of low $p_T(W)$ badly modeled.

However, CDF cuts mostly eliminate that region

No Other Reweightings Applied

But we take expected differences into account as uncertainties

We also cross-checked the effect of the reweightings on M_{jj} as well as completing the complete analysis with and without these reweightings. G. Watts (UW/Seattle)

QCD MULTIJET BACKGROUND

QCD SIDEBAND SAMPLES

Muons

DØ: Reverse the μ isolation cut **CDF:** Reverse the μ isolation cut

Electrons

DØ: Matrix Method (remove EM shower shape cuts) CDF: Anti-select on electron quality variables (low statistics issue) –

Overall shape and normalization:

DØ: Fits the M_T^W distribution **CDF:** Fits the missing E_T distribution (release cut first!)

Gives us the shape - (template) of the QCD multijet background

DØ explicitly removes W+Jets contributions from their QCD templates. CDF probably does, but couldn't find a reference.

NORMALIZATION FITS

G. Watts (UW/Seattle) referenced in CDF PRL)

29

Hypocrite!

FINAL BACKGROUND TALLY

Ele Channel	DØ	V. Cavaliere	Muon Channel	DØ	V. Cavaliere
W+Jets	5620 <u>+</u> 500	4719 <u>+</u> 141	W+Jets	3850 ± 290	3341 ± 100
Z+Jets	180 ± 42	92 ± 11	Z+Jets	350 ± 60	162 <u>+</u> 19
Diboson	434 <u>+</u> 38	403 ± 24	Diboson	304 ± 25	301 ± 18
Тор	600 <u>±</u> 69	366 <u>+</u> 37	Тор	363 <u>+</u> 39	275 ± 28
QCD	932 ± 230	394 <u>+</u> 98	QCD	151 ± 69	117 ± 29
Data	7763	5859	Data	5026	4137

- Both analyses use $4.3 f b^{-1}$
- Absolute yield larger @ DØ
- Fractionally, 20% better diboson yield for Cavaliere
- Fractionally, W+jets/Z+Jets same within 10%
- QCD has dramatic differences in yield (fractionally 30%-50%)
- Muon QCD error 50% of DZEROs (electron the same)

QCD COMPARISON

J. Wacker had this idea originally, G. Brooijmans improved upon it

SYSTEMATIC UNCERTAINTIES

0 71	v * /					
Source of systematic	Diboson signal	W+jets	$Z+ ext{jets}$	Top	Multijet	Nature
uncertainty	0			•	0	
Trigger/Lepton ID efficiency	± 5	± 5	± 5	± 5		N
Trigger correction, muon channel	± 5	± 5	± 5	± 5		D
Jet identification	± 1	± 1	± 2	± 1		D
Jet energy scale	± 10	± 5	± 7	± 5		D
Jet energy resolution	± 6	± 1	± 3	± 6		D
Jet vertex confirmation	± 3	± 3	± 4	± 1		D
Luminosity	± 6.1	± 6.1	± 6.1	± 6.1		N
Cross section		± 6.3	± 6.3	± 10		N
V+hf cross section		± 20	± 20			N
Multijet normalization					± 20	N
Multijet shape, electron channel					± 1	D
Multijet shape, muon channel					± 10	D
Diboson modeling	± 8					D
Parton distribution function	± 1	± 5	± 4	± 3		D
Unclustered Energy correction	$\pm < 1$	± 3	± 3	$\pm < 1$		D
ALPGEN η and $\Delta R(jet1, jet2)$ corrections		$\pm < 1$	$\pm < 1$			D
ALPGEN $W p_T$ correction		$\pm < 1$				D
ALPGEN correction Diboson bias	± 1	± 1	± 1	± 1		D
Renormalization and factorization scales		± 1	± 1			D
ALPGEN parton-jet matching parameters		±1	± 1			D
Parton shower and Underlying Event		± 2	± 2			D

^aThe cross section uncertainty on W+jets is not used when fitting (the W+jets normalization is a free parameter); however, it is necessary for generating pseudo-data used in the significance estimation.

DOES OUR BACKGROUND MODEL WORK?

Fit the dijet mass distribution

$$\chi^{2}(\theta, S, B; D) = 2 \sum_{i=0}^{N_{bins}} (B_{i} + S_{i} - D_{i}) - D_{i} \ln\left(\frac{B_{i} + S_{i}}{D_{i}}\right) + \sum_{k=0}^{N_{sys}} \theta_{k}^{2}$$

Background, Signal,
and observed Data
$$\theta_{k} \text{ is } \text{\# of standard}$$
deviations systematic
k has been pulled
from nominal. Allows
templates to vary with
Gaussian prior.

The W+Jets and diboson cross sections are allowed to float for this fit (no θ_k).

G. Watts (UW/Seattle)

DOES OUR BACKGROUND MODEL WORK?

COULD WE HAVE MISSED IT?

Dijet mass fit, with a $WX \rightarrow l\nu jj$ template, and set a limit

Narrow Bump @ Experimental Resolution

Simple mass scaling:

$$\sigma_{jj} = \sigma_{W \to jj} \times \sqrt{M_{jj}/M_{W \to jj}}$$

At 145 GeV,
$$\sigma_{ii} = 15.7$$
 GeV

Cross Section0.0 $BR(X \rightarrow jj) = 1.0$ 0.0Efficiency from WH ($M_H = 150$ GeV)0.0JES (changes mean by $\pm 1.5\%$)0.0JER (norm by 5%, width by 3%)0.0

FIT WITH $WX \rightarrow l\nu jj$ TEMPLATE

LIMIT SETTING

G. Watts (UW/Seattle)

B – Expected Background

MOCK THE SIGNAL

Use the data plus the WX template Use the CDF 4 pb^{-1} cross section

LLR PLOT

42

WHAT ABOUT THE LHC?

WHAT COULD IT BE?

- Gauged Baryon and Lepton Number in MSSM_4 Brane Worlds
- A two-Higgs-doublet interpretation of a small Tevatron \$Wjj\$ excess
- Subjects: High Energy Physics Phenomenology (hep-ph)
- Chiral Quirkonium Decays
- Subjects: High Energy Physics Phenomenology (hep-ph)
- Top condensation as a motivated explanation of the top forward-backward asymmetry
- Quirks at the Tevatron and Beyond
- Hermitian Flavor Violation
- A Higgsophilic s-channel Z' and the CDF W+2J Anomaly
- Dissecting the Wjj Anomaly: Diagnostic Tests of a Leptophobic Z'
- Theory and phenomenology of two-Higgs-doublet models
- Deriving the mass of particles from Extended Theories of Gravity in LHC era
- Direct detection and CMB constraints on light DM scenario of top quark asymmetry and dijet excess at Tevatron
- Measurements of top quark properties at the Tevatron collider
- Production of Charged Higgs Bosons in a 3-3-1 Model at the CERN LHC
- NLO predictions for a lepton, missing transverse momentum and dijets at the Tevatron
- An Explanation of the CDF Dijet Anomaly within a \$U(1)_X\$ Stueckelberg Extension
- Experimental proposal to study the excess at Mjj=150 GeV presented by CDF at Fermilab
- A light charged Higgs boson in two-Higgs doublet model for CDF \$Wjj\$ anomaly
- Colored Scalars And The CDF \$W+\$dijet Excess
- A Scalar Doublet at the Tevatron?
- Reconciling anomalous measurements in \$B_s-\bar{B}_s\$ mixing: the role of CPT-conserving and CPT-violating new physics
- Dijet Signature of Low Mass Strings in the Early LHC Data
- The Prediction and Evidence for a New Particle antiparticle Force and Intermediary Particle
- Color-Octet-Electroweak-Doublet Scalars and the CDF Dijet Anomaly
- Impact of extra particles on indirect Z' limits
- Z' from SU(6)\$\times\$SU(2)_h GUT, Wjj anomaly and Higgs boson mass bound
- Spontaneous Parity Violation in SUSY Strong Gauge Theory
- Anomaly Puzzle, Curved-Spacetime Spinor Hamiltonian, and

- String Phenomenology
- Dimuon CP Asymmetry in B Decays and Wjj Excess in Two Higgs Doublet Models
- Top quark asymmetry and Wjj excess at CDF from gauged flavor symmetry
- W plus two jets from a quasi-inert Higgs doublet
- Tevatron Signal for an Unmixed Radion
- The New Dijet Particle in the Tevatron IS the Higgs
- The CDF dijet excess and Z'_{cs} coupled to the second generation quarks
- A Possible Common Origin of the Top Forward-backward Asymmetry and the CDF Dijet Resonance
- An Effective Z'
- W+Jets at CDF: Evidence for Top Quarks
- Dijet resonance from leptophobic Z' and light baryonic cold dark matter
- Standard model explanation of a CDF dijet excess in Wjj
- B physics constraints on a flavor symmetric scalar model to account for the ttbar asymmetry and Wjj excess at CDF
- Dark Forces At The Tevatron
- Top quark asymmetry and dijet resonances
- Twelve massless flavors and three colors below the conformal window
- ~115 GeV and ~143 GeV Higgs mass considerations within the Composite Particles Model
- Weak-triplet, color-octet scalars and the CDF dijet excess
- Stringy origin of Tevatron Wjj anomaly
- A unified, flavor symmetric explanation for the t-tbar asymmetry and Wjj excess at CDF
- A Possible Interpretation of CDF Dijet Mass Anomaly and its Realization in Supersymmetry
- New Color-Octet Vector Boson Revisit
- The CDF dijet excess from intrinsic quarks
- No like-sign tops at Tevatron: Constraints on extended models and implications for the t tbar asymmetry
- Baryonic Z' Explanation for the CDF Wjj Excess
- \$\mathscr{0}(100 GeV)\$ Deci-weak \$W^\prime/Z^\prime\$ at Tevatron and LHC
- Signatures of Resonant Super-Partner Production with Charged-Current Decays
- Technicolor at the Tevatron
- A Z' Model for the CDF Dijet Anomaly
- Light Z' Bosons at the Tevatron
- Forward-Backward t tbar Asymmetry from Anomalous Stop Pair Production
- Searching for string resonances in e⁺e⁻ and γγcollisions

LHC Implications

 $p \bar{p}$ vs $p \bar{p}$ interaction

To have the LHC weight in we need a production mechanism

Can Search Fo

Fin We pretasym with a fwith s But we really need to wait for a $WW + WZ \rightarrow l\nu jj$ search at the LHC!

mmetry and

ckward quark el md as a wards section dijet

backwaresult, we expect to see larger *t*-*t* production cross section dijet mass d that in the SM at high values of the invariant mass of the GeV that wa $t-\bar{t}$ pairs. This would certainly be an interesting feature that wa to observe at the LHC.

G. Watts (UW/Seatt

CONCLUSIONS

- With out DØ's normal reweightings, rule out CDF bump of 1.9 pb, with reweightings it is 1.5 pb
- Very hard to make the two experiments compatible
 - CDF had a huge upwards fluctuation
 - And DØ was very unlucky
- Someone goofed??? ③
 - Both CDF and DØ have done lots of cross checks
 - See CDF's recent update for answers to many initial questions
- There is now a task force trying to sort out the differences between the analyses
 - Officially composed of theorist Estia Eichten and Keith Ellis and members of both experiments
 - Meetings already have started
- This analysis is very similar to a low-mass Higgs analysis
 - Would be useful to compare background estimation techniques
- The next 6 months should be fun (for this an other reasons)