## 4<sup>th</sup> generation at LHC

Clément Helsens IFAE Barcelona

January 2012 LPC Clermont Ferrand



06/01/2012



Clément Helsens, IFAE Barcelona



## New heavy quarks

- Over the past decades, Standard Model (SM) has been very successful in describing all the experimental measurements using "only" three generations of quarks and lepton family
- Many BSM models predict new heavy quarks: Extra-dimension, little higgs, new SM like generations, GUTs, etc...
- → Can be vector like, can have flavor changing neutral current decays, etc...
- Initial searches at the LHC focus mainly on pair produced heavy quarks, decaying mostly like the top-quark
- <u>Benchmark model:</u>
  - Simplest extension of the SM: 4<sup>th</sup> sequential generation of fermions



## **Top Quark Pair Production**

- $\sigma_{_{tt}}$  (7 Tev LHC) ~ 165 pb (172.5 GeV, Moch, Uwer, Langenfeld (Phys. Rev. D78 (2008) 034003, arXiv:0907.2527) = 20  $\sigma_{_{tt}}$  (Tevatron)
- 5fb<sup>-1</sup> @ 7 TeV already on tape
   → 825K ttbar pairs (~10 times Tevatron statistics)





#### 06/01/2012



## **Top Quark Event Topology**

- Almost all top quarks decay to  $t \rightarrow Wb$
- Final states classified by W decay modes W  $\rightarrow$  qq (2/3) or W  $\rightarrow$  lv (1/3)
  - All hadronic (no W  $\rightarrow$  lv)  $\rightarrow$  4/9 (~45%)
  - Semi-leptonic  $(1 \text{ W} \rightarrow l\nu) \rightarrow 4/9$  (only electron/muon considered  $\rightarrow \sim 31\%$ )
  - Di-leptonic  $(2 \text{ W} \rightarrow l\nu) \rightarrow 1/9$  (only electron /muon considered  $\rightarrow \sim 5\%$ )

| <u></u><br>ĈS    | n+jets         | +jets   | jets       | oll bo  | dronio |
|------------------|----------------|---------|------------|---------|--------|
| ūd               | electro        | muon    | tau+       | all-fia | uronic |
| ч <mark>ч</mark> | eτ             | μτ      | ξĩ         | tau+j   | jets   |
| ' <del>1</del> . | eμ             | , QLO   | μτ         | muon    | +jets  |
| ω'               | e Ò            | eμ      | eτ         | electro | n+jets |
| Necal            | e <sup>+</sup> | $\mu^+$ | $\tau^{+}$ | иd      | cs     |

- The top-quark provides a virtual lab to search for new physics
  - Many tops have already been produced at LHC!!
  - Various properties of the top-quark have been measured
  - This helps us to provides procedures/tools to separate SM backgrounds from new physics

## Top Quark Physic Status (cross sections only...)



ATI AS

- Single lepton: (0.7fb-1)  $\sigma$ (ttbar) = 179.0 +9.8-9.7 (stat+syst) ±6.6(lumi.)pb
- Dilepton: (0.7fb-1) :  $\sigma(\text{ttbar}) = 177 \pm 6 \text{ (stat.)} + 17 \cdot 14 \text{ (sys.)} \pm 8 \text{ (lum.)pb}$
- Combination (L+jets 35pb-1 and DL 0.7fb-1 no btag):  $\sigma(\text{ttbar}) = 176 \pm 5(\text{stat.}) + 13-10(\text{syst.}) \pm 7 (\text{lumi.})\text{pb.}$
- CMS combine L+jets, dilepton, mu+tau, all hadronic (0.8-1.1fb-1)  $\sigma$ (ttbar) = 165.8 ± 2.2 (stat.) ± 10.6 (syst.) ± 7.8 (lumi.) pb.
- → results with more luminosity coming soon approaching theoretical errors!







## $4^{th}$ generation quarks



- SM doesn't predict number of fermion generations:
  - Upper bound from QCD asymptotic freedom: number of families < 9.</li>
  - CKM constraints fairly weak.
- SM4 = SM + 4<sup>th</sup> generation family of fermions with 100 GeV < M < 600 GeV. Above 600 GeV large Yukawa couplings render model non-perturbative.
- In this talk will focus on heavy quarks
- Who ordered that?
  - Consistent w/ precision EW data and allowing for a heavier Higgs boson (up to ~500 GeV).
  - Extended CKM matrix could provide enough CPviolation to explain matter-antimatter asymmetry.
  - Can explain some anomalies in CP-violation measurements in B-physics.



|     |   | $0.97377 \pm 0.00027$ | $0.2257 \pm 0.0021$ | $0.00431 \pm 0.00030$ | < 0.044 ] |
|-----|---|-----------------------|---------------------|-----------------------|-----------|
|     |   | $0.230 \pm 0.011$     | $0.957 \pm 0.095$   | $0.0416 \pm 0.0006$   | < 0.46    |
| 4×4 | - | $0.0074 \pm 0.0008$   | $0.0406 \pm 0.0027$ | > 0.78                | < 0.47    |
|     |   | < 0.063               | < 0.46              | < 0.47                | > 0.57    |

6/44

## Vector like quarks

- Vector-like quarks: left and right components transform the same under  $SU(2)_{L}$
- $\rightarrow$  can couple to SM particles without upsetting precision EW and flavor constraints.
- Vector-like guarks in a doublet need to be nearly degenerate in mass.
- Predicted by many models: extra-dimensions, Little Higgs, GUTs,...
- Since mixing with other quarks is  $\sim m/M$ , they preferentially couple to the  $3^{rd}$  generation.
- Quite a few possibilities to explore! BRs can be quite model-dependent.

"Democratic"



## Vector like quarks

- Vector-like quarks: left and right components transform the same under  $SU(2)_{L}$
- $\rightarrow$  can couple to SM particles without upsetting precision EW and flavor constraints.
- Vector-like quarks in a doublet need to be nearly degenerate in mass.
- Predicted by many models: extra-dimensions, Little Higgs, GUTs,...
- Since mixing with other quarks is  $\sim m/M$ , they preferentially couple to the  $3^{rd}$  generation.
- Quite a few possibilities to explore! BRs can be quite model-dependent.

"W-phobic"



#### 06/01/2012



## Heavy quark production

- Up to masses ~1 TeV, dominant production is in pairs via the strong interaction:
- $\sqrt{s=7 \text{ TeV}}$ :  $\sigma(QQ) \sim 1.5 \text{ pb for } m_Q \sim 400 \text{ GeV vs} \sigma(tt) = 160 \text{ pb}$
- $\sqrt{s=14 \text{ TeV}}$ :  $\sigma(QQ) \sim 8 \text{ pb for } m_Q \sim 400 \text{ GeV}$  vs  $\sigma(tt) = 880 \text{ pb}$
- Many models involving vector-like quarks also have new heavy spin-1 colored particles (e.g G') which can enhance significantly the cross section.
- For masses above ~1 TeV the dominant production mode is single via the EW interactions (model-dep, but also opportunity to measure weak couplings of heavy quarks!).





• 4<sup>th</sup> Generation models have a restricted list of available signatures that simplify the search strategy: TT→WbWb, BB→tWtW → WbW WbW

|              |           |  | TB <sub>d</sub> |  |
|--------------|-----------|--|-----------------|--|
|              |           |  |                 |  |
| 4 leptons    |           |  |                 |  |
|              | 4l (0Z)   |  | BB              |  |
| 2 lontons    |           |  |                 |  |
| 3 leptons    | 31 (0Z)   |  | BB              |  |
| OS dileptons |           |  |                 |  |
|              | l+l- (0Z) |  | TT,BB           |  |
| SS dileptons | 1±1±      |  | BB              |  |
| lepton+iets  | l± (4j)   |  | TT              |  |
| J            | l± (≥6j)  |  | BB              |  |



## Signatures: vector like quarks

• If we consider VLQ models, there are many signatures that could be exploited, and which are ultimately needed to both enhance discovery potential and model discrimination.

|                |           | T <sub>s</sub> | <b>B</b> <sub>s</sub> | TB <sub>d</sub> | XT <sub>d</sub> | BY <sub>d</sub> |
|----------------|-----------|----------------|-----------------------|-----------------|-----------------|-----------------|
|                | 4l (2Z)   | TT             | BB                    | TT,BB           | TT              | BB              |
| 4 leptons      | 4l (1Z)   | TT             | BB                    | TT,BB           | TT              | BB              |
|                | 4l (0Z)   | TT             | BB                    | TT,BB           | TT,XX           | BB              |
| 2 lontono      | 31 (1Z)   | TT             | BB                    | TT,BB           | TT              |                 |
|                | 31 (0Z)   | TT             | BB                    | TT,BB           | TT,XX           |                 |
| OS dileptons   | l+l- (1Z) | TT             | BB                    | TT,BB           | TT              | BB              |
|                | l+l- (0Z) | TT             | BB                    | TT,BB           | TT,XX           | BB,YY           |
| SS dileptons → | ]±]±      |                | BB                    | BB              | XX              |                 |
| lepton+iets    | l± (4j)   | TT             |                       | TT              | TT              | YY              |
|                | l± (≥6j)  | TT             | BB                    | TT,BB           | TT,XX           |                 |

Of course, some of them are more challenging or powerful than others...

Clément Helsens, IFAE Barcelona

## Tevatron Results t'



- $t' \rightarrow Wb$ , L+jets Channel
- No signal consistent with t' pair production



m(t') > 358 GeV (CDF) @ 95% C.L.





Clément Helsens, IFAE Barcelona

06/01/2012

-----

13/44



Clément Helsens, IFAE Barcelona

## **Monte-Carlos**



- Signal generated with Pythia or MadGraph (ATLAS/CMS)
- Signal cross-sections from HATHOR (NNLO approximation)
- Backgrounds:
  - ATLAS: MC@NLO for ttbar, single top, Alpgen for W/Z+jets, Herwig for dibosons
  - CMS: Pyhtia, MadGraph
  - For fake leptons: Obtained via data-driven techniques → loosening the lepton ID criteria and extracting tight vs loose efficiencies in control samples

## Results Covered In This Talk

- ATLAS results  $\rightarrow$  https://twiki.cern.ch/twiki/bin/view/AtlasPublic/
  - Search for Up-Type Fourth Generation Quarks in the Dilepton plus Jets Channel (37pb-1, ATLAS-CONF-2011-022)
  - Inclusive search for same-sign dilepton signatures in pp collisions at  $\sqrt{s}$ = 7 TeV with the ATLAS detector (35pb-1, arXiv:1108.0366)
  - Search for New Phenomena in ttbar Events With Large Missing Transverse Momentum (1.04fb-1, arXiv:1109.4725)
  - Search for a heavy vector-like quark coupling to light quarks in proton-proton collision at √s= 7 TeV with the ATLAS detector (1.04 fb-1, arXiv:1112.5755)
  - Search for Up-Type Fourth Generation Quarks in the Lepton plus Jets Channel (1.04fb-1) (not yet public, under approval process, not showing details)
- CMS results  $\rightarrow$  https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults
  - Search for a Heavy Bottom-like Quark (1.14fb-1, CMS PAS EXO-11-036)
  - Search for a Heavy Top-like Quark in the Dilepton Final state (1.14fb-1, PAS-EXO-11-050)
  - Search for pair production of a fourth-generation t' quark in the lepton-plus-jets channel (0.82-0.57 fb-1, PAS-EXO-11-051)
  - Inclusive search for a fourth generation of quarks (1.1 fb-1, PAS-EXO-11-054)
  - Search for a Vector-like Quark with Charge 2/3 in t+Z Events from pp collisions at √s= 7 TeV (1.14fb-1, arXiv:1109.4985)

## CMS – Search for b' 1/3

## PAS-EXO-11-036

17/44

#### • $\underline{b'b'} \rightarrow tWtW \rightarrow WbW WbW$

- 2 same sign or three isolated leptons (e/mu) in the final state  $\rightarrow 7.3\%$  of the decay
- Dilepton triggers  $\rightarrow$  92% (mu/mu), 96% (e/mu), >99% (e/e)
- <u>Selection criteria:</u>
  - Muons: pT>20GeV,  $|\eta| < 2.4$ ; isolation  $\Sigma ET(\Delta R < 0.3)$  pileup < 0.15\* pT
  - Electron: pT>20GeV,  $|\eta| < 2.4 \notin 1.44 < |\eta| < 1.57$ ; isolation  $\Sigma ET(\Delta R < 0.3)$  pileup < 0.06\*pT
    - Select event with 2 opposite sign leptons or three leptons (2 of them opposite charge)
  - For same flavor leptons  $\rightarrow$  Z mass veto: |mll mZ| > 10 GeV
  - − B-tagging based on IP significance → 50% b-tag efficiency; 1% mistag rate; nbjet ≥1
  - Jets clustered using PF particles and Anti-kt with a cone of 0.5; pt > 25GeV;  $|\eta| < 2.4$ 
    - Same sign lepton  $\rightarrow$  njets $\geq$ 4; 3 lepton channel njets $\geq$ 2
  - ST = scalar sum of jet pT, lepton pT, MET, should be > 500GeV

#### • <u>Signal selection efficiency:</u>

| $M_{\mathbf{b}'}$  | cross section | same-sign dil  | epton | trilepton       | l     |
|--------------------|---------------|----------------|-------|-----------------|-------|
| $[\text{GeV}/c^2]$ | [pb]          | efficiency [%] | yield | efficiency [%]  | yield |
| 350                | 3.20          | $1.16\pm0.15$  | 42    | $0.33 \pm 0.06$ | 12    |
| 400                | 1.41          | $1.36\pm0.17$  | 22    | $0.42 \pm 0.06$ | 6.7   |
| 450                | 0.662         | $1.51\pm0.18$  | 11    | $0.45 \pm 0.07$ | 3.4   |
| 500                | 0.330         | $1.57\pm0.19$  | 5.9   | $0.48 \pm 0.07$ | 1.8   |
| 550                | 0.171         | $1.80\pm0.22$  | 3.5   | $0.57\pm0.08$   | 1.1   |

06/01/2012

#### CMS - Search for b' 2/3**PAS-EXO-11-036** CMS 2011 Preliminary 1.14 fb<sup>-1</sup> CMS 2011 Preliminary **Backgrounds**: Events 10<sup>2</sup> Events 10<sup>2</sup> \_\_\_\_ M<sub>b</sub>, 400 GeV/c<sup>2</sup> data data tt+W(Z) tt Single-top +W(Z) Sinale-top W→ly W→lv Same sign 2 leptons $\rightarrow$ main Z→|<sup>+</sup>|<sup>-</sup> Z→|<sup>+</sup>| diboson diboson same-sign dilepton trilepton contribution is from ttbar 10 3 leptons; main contribution 10 tt+W(Z)Good modeling of the data, no sign of any excess $\rightarrow$ set limits 10<sup>-1</sup> 10 2 6 6 8 0 2 4 8 10 $\cap$ 10 $\mathsf{N}_{\mathsf{Jets}}$ $\mathsf{N}_{\mathsf{Jets}}$ Expected/observed yields: CMS 2011 Preliminary 1.14 fb<sup>-1</sup> CMS 2011 Preliminary 1.14 fb<sup>-1</sup> Events / 200 GeV ] M<sub>b</sub>, 400 GeV/c<sup>2</sup> Events / 200 GeV 01 02 ] M<sub>b</sub> 400 GeV/c<sup>2</sup> data data Total BG in Data tī Single-top tt+W(Z) tt+W(Z) Single-top W→lv W→ly signal region Z→|<sup>+</sup>|<sup>-</sup> diboson Z→|<sup>+</sup>|<sup>-</sup> diboson 10<sup>2</sup> same-sign dilepton trilepton 2SS 4.4 +/- 1.4 5 10 10 0.16 +/- 0.09 3 lepton 1

Clément Helsens, IFAE Barcelona

200 400 600 800 1000 1 200 1 400 1 600 1 800

S<sub>⊤</sub> [GeV]

10

10<sup>-1</sup>

18/44

S<sub>T</sub> [GeV]

200 400 600 800 1000 1 200 1 400 1 600 1 800

06/01/2012

## 2012

## CMS - Search for b' 3/3



- Limits extracted using a cut and count method
- Bayesian method with log-normal prior for integration over the nuisance parameters
- Observed limit: m(b') > 495GeV @ 95%CL

|          | Total BG in signal region | Data |
|----------|---------------------------|------|
| 2SS      | 4.4 +/- 1.4               | 5    |
| 3 lepton | 0.16 +/- 0.09             | 1    |

|                                   | same-sign d               | lilepton   | trilepto                  | on         |
|-----------------------------------|---------------------------|------------|---------------------------|------------|
|                                   | $\Delta\epsilon/\epsilon$ | $\Delta B$ | $\Delta\epsilon/\epsilon$ | $\Delta B$ |
| Accuracy of control-sample method | -                         | 1.02       | -                         | -          |
| Control sample statistics         | -                         | 0.49       | -                         | -          |
| Integrated Luminosity             | 4.5%                      | 0.03       | 4.5%                      | 0.007      |
| Background normalization          | -                         | 0.39       | -                         | 0.059      |
| Lepton selection                  | 4.4 - 4.5%                | 0.03       | 6.2 – 6.5%                | 0.010      |
| b-tagging                         | 10%                       | 0.07       | 10%                       | 0.016      |
| Pile-up events                    | 2.3%                      | 0.35       | 3.4%                      | 0.053      |
| Jet energy scale                  | 1.4 - 3.2%                | 0.12       | 0.4 - 4.3%                | 0.008      |
| Jet energy resolution             | 0.8 - 2.4%                | 0.51       | 0.6 – 3.5%                | 0.010      |
| Missing energy resolution         | 0.1 – 3.1%                | 0.10       | 0.6 – 6.0%                | 0.014      |
| Trigger                           | 2.3%                      | 0.07       | 2.3%                      | 0.004      |
| PDF                               | 0.3 - 0.7%                | 0.06       | 0.7 – 1.8%                | 0.005      |
| Simulated sample statistics       | 3.1 - 4.0%                | 0.05       | 5.6 - 7.4%                | 0.025      |
| Total                             | 12 – 13%                  | 1.4        | 14 - 17%                  | 0.09       |



#### 06/01/2012

#### Clément Helsens, IFAE Barcelona

19/44

# ATLAS – Same sign dileptons 1/3

arXiv:1108.0366

- This analysis present the search for two same sign leptons (ee/e $\mu/\mu\mu$ )
- Inclusive search for new physics  $\rightarrow$  limits on heavy Majorana neutrinos, UED, b'

#### • <u>Selection:</u>

- 2 same sign leptons with tight identification criteria
- Single lepton trigger
- Lepton pT > 20GeV; muon  $|\eta| < 2.5$ ; electron  $|\eta| < 2.47 \notin 1.37 < |\eta| < 1.52$
- Lepton isolation:  $\Sigma ET(\Delta R < 0.2) < 0.15*pT$
- Jets: Anti-kt 0.4, pt> 30GeV,  $|\eta| < 2.5$
- ETMiss > 30 GeV



## ATLAS – Same sign dileptons 2/3

arXiv:1108.0366

- <u>Background sources in the SM:</u>
  - $QCD \rightarrow jets faking/creating isolated leptons$
  - Charge Mis-Identification
  - Diboson  $\rightarrow$  irreducible background
- Data/Monte Carlos modeling is shown in the njet distribution:
  - This is the variable used for limit setting





06/01/2012



Assuming BR(b'  $\rightarrow$  tW) = 1  $\rightarrow$  m(b') > 290GeV @ 95% C.L.

Analysis with 1fb-1 under ATLAS internal circulation

•

•

•



## CMS – Search for t' dilepton 1/3

## PAS-EXO-11-050

• Search for heavy top-like: t't'  $\rightarrow$  WbWb  $\rightarrow$  lvb lvb (l=e/ $\mu$ )

#### • <u>Selection:</u>

- 2 (or more) opposite sign leptons; pt>20GeV;  $|\eta| < 2.4$
- Dilepton triggers efficiency  $\rightarrow$  100, 95, 90% for ee, eµ, µµ, respectively
- Lepton isolation  $\rightarrow \Sigma ET(\Delta R < 0.3) < 0.15^* pT$
- Z mass veto for ee,  $\mu\mu \rightarrow$  removed event if 76 < Mll < 106GeV or Mll<12GeV
- Jets: Anti-kt R=0.5; pT>30GeV;  $|\eta| < 2.5$  (separated by  $\Delta$ R>0.4 from selected leptons)
  - At least 2 jets and at least two of them b-tag
- ETMiss > 30GeV

#### $\rightarrow$ after basics selection ttbar $t'\bar{t'}, M_{t'} = 350 \,\text{GeV}/c^2$ $5.63 \pm 0.41$ $5.63 \pm 0.38$ $t'\bar{t'}, M_{t'} = 40$ $t'\bar{t'}, M_{t'} = 45$ $t\bar{t} \rightarrow \ell^+ \ell^-$

Sample

The invariant mass of lepton and b-jet is used as discriminant

Signal region:

dominates...

- At generator level:  $\rightarrow$  clear distinction between t' and top
- At reconstruction level:  $\rightarrow$  pairing done with min( $\Delta R$ ) between lepton and bjet
- Mlb > 170 GeV is applied for the two masses
  - $\rightarrow$  signal efficiency ~ 40%
  - $\rightarrow$  ttbar very small...



| $t'\bar{t'}, M_{t'} = 400  \text{GeV}/c^2$  | $2.51 \pm 0.18$   | $2.92 \pm 0.19$   | $6.33 \pm 0.28$   | $11.76 \pm 0.38$   |
|---------------------------------------------|-------------------|-------------------|-------------------|--------------------|
| $t'\bar{t'}, M_{t'} = 450 \mathrm{GeV}/c^2$ | $1.45 \pm 0.09$   | $1.53 \pm 0.09$   | $3.27 \pm 0.14$   | $6.25 \pm 0.19$    |
| $t\bar{t} \to \ell^+ \ell^-$                | $167.46 \pm 5.85$ | $178.88 \pm 5.71$ | $445.45 \pm 9.30$ | $791.79 \pm 12.38$ |
| $t\bar{t} \rightarrow fake$                 | $3.35 \pm 0.85$   | $0.19 \pm 0.19$   | $5.81 \pm 1.04$   | $9.35 \pm 1.36$    |
| W + jets                                    | < 2               | < 2               | < 2               | < 2                |
| $DY \rightarrow \ell^+ \ell^-$              | $2.23 \pm 1.39$   | $2.15 \pm 1.66$   | < 1               | $4.38 \pm 2.17$    |
| Di-boson                                    | $0.04 \pm 0.01$   | $0.14 \pm 0.07$   | $0.14 \pm 0.07$   | $0.31 \pm 0.10$    |
| Single top                                  | $2.63 \pm 0.28$   | $2.41 \pm 0.26$   | $7.03 \pm 0.45$   | $12.06 \pm 0.59$   |
| Total simulated background                  | $175.70 \pm 6.08$ | $183.76 \pm 5.96$ | $458.43 \pm 9.37$ | $817.88 \pm 12.66$ |
| Data                                        | 184               | 182               | 512               | 878                |
|                                             |                   |                   |                   |                    |
|                                             |                   |                   |                   |                    |
|                                             |                   |                   |                   |                    |
| )0 <sub>[</sub>                             |                   | 500               |                   |                    |

 $\mu\mu$ 

ee



# CMS - Search for t' dilepton 2/3

**PAS-EXO-11-050** 

 $e\mu$ 

 $13.43 \pm 0.61$ 



 $24.69 \pm 0.83$ 

100

 $\begin{array}{cccccc} 100 & 200 & 300 & 400 & 500 \\ M_{|1b1} \, (\text{GeV/c}^2) \ \text{for } M_{_{12b2}} > 170 \ \text{GeV/c}^2 \end{array}$ 

Events

10<sup>2</sup>

10

10<sup>-1</sup>

10<sup>-2</sup>

#### Clément Helsens, IFAE Barcelona

Data

t (dileptonic)

Other backgrounds

t't', M. = 350 GeV/c<sup>2</sup>



 $ightarrow ext{ti}$ ) pb

σ (pp -

10



500

10<sup>-2</sup>

100

| $u \rightarrow u  u$                           | $1.00 \pm 0.01$                 | Data       |
|------------------------------------------------|---------------------------------|------------|
| Fake leptons                                   | $0.0\substack{+0.4 \\ -0.0}$    | Data       |
| $DY \rightarrow e^+e^- \text{ or } \mu^+\mu^-$ | $0.07\substack{+0.13 \\ -0.07}$ | Data       |
| $DY \rightarrow \tau^+ \tau^-$                 | $0.11 \pm 0.11$                 | Simulation |
| Di-boson                                       | $0.02 \pm 0.02$                 | Simulation |
| Single top                                     | $0.07 \pm 0.04$                 | Simulation |
| Total prediction                               | $1.62^{+0.80}_{-0.70}$          |            |
| Data                                           | 1                               |            |
|                                                |                                 |            |
|                                                |                                 |            |

| • | 1 event | observed; | 1.62 | expected |
|---|---------|-----------|------|----------|
|---|---------|-----------|------|----------|

- 95% CL Limits extracted using Cut and count •
- Observed limit  $\rightarrow$  m(t') > 422GeV @ 95% CL •

| Sample                                         | Yield                           | Source     |
|------------------------------------------------|---------------------------------|------------|
| $t\bar{t} \to \ell^+ \ell^-$                   | $1.35 \pm 0.67$                 | Data       |
| Fake leptons                                   | $0.0^{+0.4}_{-0.0}$             | Data       |
| $DY \rightarrow e^+e^- \text{ or } \mu^+\mu^-$ | $0.07\substack{+0.13 \\ -0.07}$ | Data       |
| $DY \rightarrow \tau^+ \tau^-$                 | $0.11 \pm 0.11$                 | Simulation |
| Di-boson                                       | $0.02\pm0.02$                   | Simulation |
| Single top                                     | $0.07\pm0.04$                   | Simulation |
| Total prediction                               | $1.62^{+0.80}_{-0.70}$          |            |
| Data                                           | 1                               |            |

CMS Preliminary 1.14 fb<sup>-1</sup>√s=7 TeV

..... 95% CL Expected Limits

95% CL, Observed Limits

•••••• NLO Theory

 $CL_{e} \pm 1\sigma$ 

 $CL_{e} \pm 2\sigma$ 

500





25/44

600

 $M_{\mu}$  (GeV/c<sup>2</sup>)

## ATLAS – Search for t' dilepton 1/3

## 35pb search ever in this channel!!

For this analysis, no assumption about the quark mixing in the final state t'  $\rightarrow$  Wq

- Baseline selection:
  - Excatly 2 leptons pT > 20GeV; muon  $|\eta| < 2.5$ ; electron  $|\eta| < 2.47 \notin 1.37 < |\eta| < 1.52$
  - Lepton isolation:  $\Sigma ET(\Delta R < 0.2) < 4 GeV$
  - Jets: Anti-kt 0.4, pt> 20 GeV,  $|\eta| < 2.5 \rightarrow$  at least 2 jets
  - ETMiss > 40 GeV (ee/ $\mu\mu$ ); HT(MET+lep pt) > 130GeV (e $\mu$ )
  - For  $ee/\mu\mu \rightarrow Mll > 15GeV$ ; |Mll MZ| > 10GeV

#### <u>Reconstruction of the heavy quark masses:</u>

- At high W pT  $\rightarrow$  neutrino and lepton  $\sim$  collinear
- Reconstruct both neutrinos by assuming solely contribution to MET
- Reconstruct  $|\Delta \eta(l,v)|$  and  $|\Delta \Phi(l,v)|$  for each neutrino as a free parameter  $\rightarrow$  range [0,1]
- Find the  $|\Delta \eta(l,v)|$  and  $|\Delta \Phi(l,v)|$  values and jet assignment that minimizes the differences between the two masses (collinear mass)

#### ATLAS-CONF-2011-022





#### 06/01/2012

#### Clément Helsens, IFAE Barcelona

## ATLAS – Search for t' dilepton 2/3

| Q4 Mass (GeV) | Final selection                              |
|---------------|----------------------------------------------|
| 250           | $H_{\rm T}$ > 500 – 0.7 × $M_{collinear}$    |
| 300           | $H_{\rm T} > 600 - 0.5 \times M_{collinear}$ |
| 350           | $H_{\rm T} > 600 - 0.2 \times M_{collinear}$ |
| 400           | $H_{\rm T} > 700 - 0.3 \times M_{collinear}$ |



35pb







#### ATLAS-CONF-2011-022



→ triangular cut in the Mcoll – HT plane ( = Hthad + lepton pT + MET)

- Optimized for each t' mass → improve the signal/background discrimination
- → Mcoll after triangular cut
   is used to discriminate
   signal and background

27/44

Clément Helsens, IFAE Barcelona

06/01/2012

## ATLAS – Search for t' dilepton 3/3

Cross Section (pb)



#### ATLAS-CONF-2011-022

| $Q_4$ Mass [GeV/ $c^2$ ] | 250                    | 300                    | 350                    | 400                   |
|--------------------------|------------------------|------------------------|------------------------|-----------------------|
| Total BG                 | $40.4 \pm 0.7 \pm 3.9$ | $16.8 \pm 0.5 \pm 1.7$ | $10.1 \pm 0.4 \pm 1.0$ | $6.3 \pm 0.4 \pm 0.8$ |
| Signal                   | $20.7 \pm 0.5 \pm 1.9$ | $7.1 \pm 0.2 \pm 0.3$  | $3.0 \pm 0.1 \pm 0.2$  | $1.4 \pm 0.1 \pm 0.1$ |
| Observed                 | 40                     | 11                     | 8                      | 5                     |

 Binned maximum likelihood used to set limit on the production cross section (Feldmans Cousins principle used to build the confidence band) Template fit using the Mcoll distribution

#### Observed limit m(t') > 270GeV @ 95%CL

| Source                              | Effect          | Size [%] |
|-------------------------------------|-----------------|----------|
| Electron trigger and reconstruction | Yield           | 1.6%     |
| Electron ID                         | Yield           | 2-9%     |
| Muon ID and reconstruction          | Yield           | 0.3%     |
| Muon trigger                        | Yield           | 0.1-1.3% |
| Electron energy scale               | Shape           | 0.6%     |
| Muon momentum scale                 | Shape           | 0.1%     |
| Jet energy scale                    | Shape and Yield | 12%      |
| Gluon radiation                     | Shape and Yield | 15%      |
| Signal cross-section                | Yield           | 14%      |
| Background cross-sections           | Yield           | 5-30%    |
| Fake lepton background              | Shape and Yield | 50%      |
| Luminosity                          | Yield           | 11%      |



Result using 1fb-1 of 2011 data is under internal review Paper will be published

#### 06/01/2012

#### Clément Helsens, IFAE Barcelona

# CMS – Search for t' single-lepton 1/3

• Final state  $t't' \rightarrow WbWb \rightarrow qqb l\nu b$ 

#### • <u>Selection:</u>

- Isolated Electron pt > 30 45 GeV (trigger threshold changed)  $|\eta| < 2.4 \notin 1.44 < |\eta| < 1.57$
- Isolated Muon pt > 35 GeV  $|\eta| < 2.1$
- Jets: Anti-kt R= $0.5 \rightarrow 4$  jets 120, 90, 35, 35 GeV
- MET > 20GeV
- At least 1 btag jet

| process                     | cross section | e+jets eff.   | $\mu{+}{\rm jets}$ eff. |
|-----------------------------|---------------|---------------|-------------------------|
| $t' \bar{t'}$               |               |               |                         |
| $m_{t'}=350\;{\rm GeV}$     | 3.20  pb      | $3.7\pm0.4\%$ | $4.5\pm0.3\%$           |
| $m_{t'} = 400 \; {\rm GeV}$ | 1.41 pb       | $4.3\pm0.4\%$ | $5.2\pm0.4\%$           |
| $m_{t'} = 450 \; {\rm GeV}$ | 0.66 pb       | $4.8\pm0.4\%$ | $5.6\pm0.4\%$           |
| $m_{t'}=500\;{\rm GeV}$     | 0.33 pb       | $5.0\pm0.4\%$ | $5.8\pm0.4\%$           |
| CMS simulation              |               |               |                         |

| process          | cross section $e$ +jets events $\mu$ +jets events |                     |                       |  |
|------------------|---------------------------------------------------|---------------------|-----------------------|--|
| L                |                                                   | $573 { m ~pb^{-1}}$ | $821 \text{ pb}^{-1}$ |  |
| data             |                                                   | 520                 | 1054                  |  |
| $t\bar{t}$       | 158  pb                                           | $456\pm91$          | $907 \pm 114$         |  |
| single $t$       | 33  pb                                            | $14.5\pm3.5$        | $30\pm 6$             |  |
| W+jets           | $30~\mu{ m b}$                                    | $33.3\pm8.2$        | $106\pm25$            |  |
| Z+jets           | $2.9 \ \mu \mathrm{b}$                            | $4.5\pm1.2$         | $2.6\pm2.6$           |  |
| WW, WZ, ZZ       | $67 \mathrm{~pb}$                                 |                     | $2.1\pm0.6$           |  |
| multijets        |                                                   | $2.5\pm1.2$         | $5.7\pm5.5$           |  |
| total background |                                                   | $510\pm103$         | $1054 \pm 145$        |  |

PAS-EXO-11-051

0.5-0.8fb





Clément Helsens, IFAE Barcelona

31/44

06/01/2012

# ATLAS – Search for t' single-lepton 1/2

Not yet public...

- As in CMS: Final state t't'  $\rightarrow$  WbWb  $\rightarrow$  jjb lvb
- <u>Strategy:</u>
  - Stay as close as possible to the top group selection
  - Relatively low jet pT, and lepton pT
  - Using the btagging ( $\geq 1$ bjet 70% efficiency)
- <u>1D kinematic Likelihood fit</u>
  - Reconstructed top mass
  - 3 jet bin: just the invariant mass of the 3 jets
  - >=4 jets: using KLFitter (see many talks about performance)
    - Using leading 4 jets only
    - Floating 'top' mass
    - Only constrain both 'sides' to be similar

Helps to constraint systematics with profiling

# ATLAS – Search for t' single-lepton 2/2 Not yet public...



- Systematics treated as nuisance parameters
- ATLAS list of systematics is very conservative respect to CMS (23 sources considered, 13 • are profiled; CMS 7 systematics, no ttbar modeling)
- A profile likelihood ratio is performed combining 3jet exclusive/4 jet inclusive channel for at least 1btag jet and electron and muon channels
- Full results will be made public soon, under ATLAS internal review •

# CMS – Inclusive search for a 4<sup>th</sup> generation 1/3<sub>PAS-EXO-11-05</sub>



- This analysis presents the inclusive search of  $4^{th}$  generation up-down type quark from pair or single production (t'b  $\rightarrow$  Wb b; b't  $\rightarrow$  WbW Wb; t't'  $\rightarrow$  WbWb; b'b'  $\rightarrow$  WbW WbW)
- <u>Search is performed in the muon channel:</u>
  - 1 isolated muon pt> 40 GeV;  $|\eta| < 2.1$ ; veto other isolated muons pT >10GeV,  $|\eta| < 2.5$ ; veto electrons pt>20GeV;  $|\eta| < 2.5$
  - Jets pt> 30GeV;  $|\eta| < 2.5$ ;  $\geq 1$  to be a b-tag ( $|\eta| < 2.4$  tracker acceptance)
  - MET>40GeV to reduce QCD multijet
- Search performed in 6 subsamples, based on nb-jet (==1,  $\geq 2$ ); nWhad (==0, ==1, ==2,  $\geq 3$ )
  - 1B\_0W  $\rightarrow$  single t' with 1 fwd/1central bjet; ==1 forward jet (2.4<| $\eta$ |<5) pT>30GeV
  - 2B\_0W  $\rightarrow$  single t' with 2central bjets; ==0 forward jet (2.4<| $\eta$ |<5) pT>30GeV
  - 1B\_1W  $\rightarrow$  t't' tt pair production with 1 b-jet failing ID;  $\geq$ 3 jets in addition of the btag
  - 2B\_1W
  - 2B\_2W  $> \rightarrow$  one additional bjet at least 2, 4, 6 additional jets
  - 2B\_3W

#### Clément Helsens, IFAE Barcelona



#### 06/01/2012

#### Clément Helsens, IFAE Barcelona

35/44



## CMS – Inclusive search for a 4<sup>th</sup> generation 3/3

$$CKM4 = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} & V_{ub'} \\ V_{cd} & V_{cs} & V_{cb} & V_{cb'} \\ V_{td} & V_{ts} & V_{tb} & V_{tb'} \\ V_{t'd} & V_{t's} & V_{t'b} & V_{t'b'} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \sqrt{A} & \sqrt{1-A} \\ 0 & 0 & \sqrt{1-A} & \sqrt{A} \end{pmatrix}$$

- Different templates of signal are made for each value of A and masses of the new quark
- The results are presented in the plane (A, mq4), where mq4 is the degenerate mass of the quarks, A = |Vtb|2
- Using the CLs method is used to set limits together with a profile likelihood template fit
- For minimal off diagonal mixing, (A~1) between the third and the fourth generation, mt' = mb' > 490GeV @ 95%CL





## ttbar + Anomalous $E_{T}^{miss}$ 1/2

### arXiv:1109.4725

- Search for anomalous MET in tt (single lepton) events
- Benchmark: TT pair with  $T \rightarrow tA_0$ 
  - $A_0$  is a dark matter candidate
  - Enhanced cross section due to spin states

#### Signal region:

 $\begin{array}{ll} - & E_{T}^{\rm miss} &> 100 {\rm GeV}, \, m_{T}^{\rm >} 150 {\rm GeV}, \, dilepton \, veto, \\ & p_{T}^{\rm >} 15 {\rm GeV}, \, tracks, \, loose \, electrons \end{array}$ 

| Source                           | Number of events |
|----------------------------------|------------------|
| Dilepton $t\overline{t}$         | $62 \pm 15$      |
| Single-lepton $t\bar{t}/W$ +jets | $33.1 \pm 3.8$   |
| Multi-jet                        | $1.2 \pm 1.2$    |
| Single top                       | $3.5 \pm 0.8$    |
| Z+jets                           | $0.9 \pm 0.3$    |
| Dibosons                         | $0.9 \pm 0.2$    |
| Total                            | $101 \pm 16$     |
| Data                             | 105              |



#### Clément Helsens, IFAE Barcelona



## ttbar + Anomalous $E_{T}^{miss}$ 2/2

arXiv:1109.4725

- Assuming  $BR(T \rightarrow tA0) = 1$
- Cut and count method used to set limit using frequentist confidence intervals
- 95% CL limits on TT pair production cross section (depend on A0 and T masses)
  - m(T) < 420 GeV for m(A0) < 10GeV
  - 330 < m(T) < 390 GeV for m(A0) < 140 GeV



## Search for VLQ (single prod.) 1/3

arXiv:1112.5755

- Search for vector like quarks (VLQ)Q singly produced both in
  - Charged Current (CC)  $pp \rightarrow Qq \rightarrow Wqq'$
  - Neutral Curent (NC)  $pp \rightarrow Qq \rightarrow Zqq'$
- Assuming only leptonic decays of the gauge boson
- Both S and T channels contribute to the signal cross section
- Assume VLQ couples to first two generation only (2 degenerate VLQ doublets)→ potentially strong signal at the LHC
- Couplings  $KqQ = (\nu/mQ)K'qQ$ 
  - q is any light quark; Q is VLQ, mQ VLQ mass
  - $\nu$  Higgs vev
  - $K'qQ \rightarrow$  the model dependence of the qVQ vertex (V = W or Z)
  - Consider only VLQs U and D of charge +2/3 and -1/3







## Search for VLQ (single prod.) 3/3

arXiv:1112.5755

1fb<sup>-1</sup>

41/44

- Cls method and binned maximum Likelihood
- Search performed by searching a signal peak on top of a smooth background
- No evidence of VLQ found
- Assuming K'uU = K'uD = 1 set limits  $\rightarrow$  mVLQ > 900(760) GeV for CC(NC) @95%C.L.
- Tevatron limits  $\rightarrow$  K'uU=1 690GeV (100% BR CC) ; K'uD=sqrt(2) 550GeV (100% BR NC)

| Process                      | Electron channel         | Muon channel             |  |
|------------------------------|--------------------------|--------------------------|--|
| W+jets                       | $14500 \pm 100 \pm 4400$ | $16600 \pm 100 \pm 5000$ |  |
| tt                           | $2360 \pm 50 \pm 270$    | $2530 \pm 50 \pm 290$    |  |
| Single Top                   | $700 \pm 30 \pm 120$     | $740 \pm 27 \pm 120$     |  |
| Multijet                     | $670 \pm 30 \pm 270$     | $340 \pm 20 \pm 410$     |  |
| Z+jets                       | $128 \pm 11 \pm 90$      | $432 \pm 21 \pm 170$     |  |
| Diboson                      | $174 \pm 13 \pm 53$      | $198 \pm 14 \pm 62$      |  |
| Expected Total Background    | $18500 \pm 100 \pm 4400$ | $20900 \pm 100 \pm 5100$ |  |
| Data                         | 17302                    | 20668                    |  |
| Expected Signal, D(225 GeV)  | $2360 \pm 50 \pm 350$    | $2380 \pm 50 \pm 400$    |  |
| Expected Signal, D(600 GeV)  | $133 \pm 12 \pm 10$      | $133 \pm 12 \pm 11$      |  |
| Expected Signal, D(1000 GeV) | $14 \pm 4 \pm 1$         | $14 \pm 4 \pm 1$         |  |
|                              |                          |                          |  |

| Process                      | Electron Channel      | Muon Channel          |  |
|------------------------------|-----------------------|-----------------------|--|
| Z+jets                       | $3250\pm60\pm430$     | $5350 \pm 70 \pm 700$ |  |
| tt                           | $58 \pm 8 \pm 3$      | 90 ± 9 ± 5            |  |
| Diboson                      | $38 \pm 6 \pm 4$      | $58 \pm 8 \pm 4$      |  |
| Expected Total Background    | $3350\pm60\pm430$     | $5500 \pm 70 \pm 700$ |  |
| Data                         | 3105                  | 5070                  |  |
| Expected Signal, U(225 GeV)  | $192 \pm 14 \pm 9$    | $339 \pm 18 \pm 19$   |  |
| Expected Signal, U(600 GeV)  | $15 \pm 3.9 \pm 0.6$  | $23 \pm 4.8 \pm 0.7$  |  |
| Expected Signal, U(1000 GeV) | $1.9 \pm 1.4 \pm 0.1$ | $2.7 \pm 1.6 \pm 0.1$ |  |



## Search for VLQ in t+Z (pair prod.)1/2

arXiv:1109.4985

- Search for a pair-produced heavy vector like quark T (VLQ) with charge 2/3
- 100% BR T  $\rightarrow$  tZ; pp  $\rightarrow$  TT  $\rightarrow$  tZtZ  $\rightarrow$  WbZWbZ
- Muon, pT > 15GeV and  $|\eta| < 2.4$
- Electron > 20GeV and  $|\eta| < 2.5 \notin 1.44 < |\eta| < 1.57$
- Jets from particle flow, antikt 0.5; pT>25GeV,  $|\eta| < 2.4$
- One leptonic  $Z \rightarrow 2$  OS, same flavored leptons (e or mu) 60 < Mll < 120GeV
- At least 3 leptons and at least 2 jets

06/01/2012

• RT > 80GeV, with RT =  $\Sigma pT(jet i) + \Sigma pT(lepton i)$  (i  $\neq 1,2$ )



#### Clément Helsens, IFAE Barcelona

## Search for VLQ in t+Z (pair prod.)2/2

arXiv:1109.4985

- After full event selection two types of backgorund remains:
  - Events with 2 prompt leptons and a non prompt lepton from a jet  $(B_{2}) \rightarrow data driven$
  - Events with 3 prompt leptons ( $B_{31}$ ) tt+Z, diboson  $\rightarrow$  from MC
- Seven events observed in data, compatible with SM expectation  $\rightarrow$  no evidence of VLQ
- Upper limit on the cross section calculated using a Bayesian method
- Assuming a BR of 100% T  $\rightarrow$  tZ set limits on the cross section
- Exclude m(VLQ)< 475GeV @ 95% C.L.

| Channel            | eee                 | eeµ         | μμе         | μμμ         | Total         |
|--------------------|---------------------|-------------|-------------|-------------|---------------|
| $B_{2\ell}$        | $0.2^{+0.3}_{-0.2}$ | $0.8\pm0.5$ | $0.9\pm0.4$ | $1.1\pm0.5$ | $3.0 \pm 0.8$ |
| $B_{3\ell}$        | $0.3 \pm 0.1$       | $0.3\pm0.1$ | $0.5\pm0.2$ | $0.5\pm0.2$ | $1.6\pm0.5$   |
| B <sub>total</sub> | $0.5 \pm 0.3$       | $1.1\pm0.5$ | $1.4\pm0.5$ | $1.7\pm0.6$ | $4.6 \pm 1.0$ |
| Data               | 0                   | 2           | 2           | 3           | 7             |



## **Conclusion and Outlook**

- ATLAS and CMS have performed the search for new heavy quarks in several decay channels
  - Search for new heavy quarks made a lot of quick progress at LHC
  - LHC limits are now the most stringent ones
  - Unfortunately no sign of new physic yet :(
- Some analysis still based on 2010 dataset, but are being updated (in the pipeline for approval)
- Improvement expected for Moriond ~ factor of 4 in luminosity
- Our program of heavy quark searches is barely covering the tip of the iceberg....
- We have a nice set of searches focusing on pair production but much territory remains to be explored (NC decay modes, boosted topologies, single production, etc).
- Lots of fun coming soon :)
- Apologies for any relevant topics omitted due to time limitations





IFAE9