Cosmology of the Dirac-Milne Universe

Aurélien Benoit-Lévy

Institut d'Astrophysique de Paris

in collaboration with Gabriel Chardin

Benoit-Lévy, Chardin, A&A, accepted

Antimatter and Gravitation - Paris - October 2011

95% of our Universe escapes our knowledge

95% of our Universe escapes our knowledge

Dark Energy

- True cosmological constant: why this value?
- Vacuum energy: 10¹²⁰ times smaller than expected
- "Coincidence problem"

95% of our Universe escapes our knowledge

Dark Energy

- True cosmological constant: why this value?
- Vacuum energy: 10¹²⁰ times smaller than expected
- "Coincidence problem"

Dark Matter

- Baryon content from Standard Big-Bang nucleosynthesis not sufficient
- Still escapes direct detection

95% of our Universe escapes our knowledge

Dark Energy

- True cosmological constant: why this value?
- Vacuum energy: 10¹²⁰ times smaller than expected
- "Coincidence problem"

Dark Matter

- Baryon content from Standard Big-Bang nucleosynthesis not sufficient
- Still escapes direct detection
- Inflation
 - Introduced to solve horizon and flatness problem

Standard model relies on 3 ingredients which are undetected and /or not understood

Matter - antimatter symmetric Universe

Antimatter is supposed to have a negative active gravitational mass

Matter - antimatter symmetric Universe

Antimatter is supposed to have a negative active gravitational mass

Antimatter naturally comes as negative mass candidate from Kerr-Newman solution

• When $(q, m, ma) = \left(-e, m_e, \frac{\hbar}{2}\right)$ then two \mathbb{R}^4 connected by the annular singularity

Solution is symmetric under
$$(r, e, m) \leftrightarrow (-r, -e, -m)$$

- In the second space, the solution is seen as having reversed charge and mass (Carter 68)
- This strongly suggests antimatter!
- Also implies that cannot create negative mass as independent degree of freedom

"Runaway" solution (Bondi 57)

If antimatter is Bondi-type negative mass, antihydrogen weighting experiments should see antimatter fall as matter

- Corresponds to negative inertial mass
- This would lead to incompatible annihilations

To have a viable cosmology, we need mutual repulsion between matter and antimatter

If antimatter is Bondi-type negative mass, antihydrogen weighting experiments should see antimatter fall as matter

- Corresponds to negative inertial mass
- This would lead to incompatible annihilations

To have a viable cosmology, we need mutual repulsion between matter and antimatter

- Electron-hole analogy: antimatter seen as hole. Goes up in a gravitational field.
 - "Electron bubble" in superfluid helium; bubble accelerated upwards with 2g
 - Voids in large-scale structures seen as negative density with respect to background density (Dubinski et al. 93, Piran 97). What if background density is null?

Flat space-time, open space

$$T_{\mu\nu} = 0 \iff a(t) = t \text{ and } k = -1$$

$$T_{\mu\nu} = 0 \iff a(t) = t \text{ and } k = -1$$

Linear evolution with time of the scale factor

- no acceleration (and no deceleration) of the expansion
- a linear scale factor during the whole history of the Universe solves the horizon problem

$$T_{\mu\nu} = 0 \iff a(t) = t \text{ and } k = -1$$

Linear evolution with time of the scale factor

- no acceleration (and no deceleration) of the expansion
- a linear scale factor during the whole history of the Universe solves the horizon problem
- time temperature relation

$$T = \frac{T_0}{H_0} \frac{1}{t}$$

	Standard Model	Dirac-Milne	Ratio
T= 170 MeV	3 x 10 ⁻⁵ sec	7 days	1.7 x 10 ¹⁰
T = 1 MeV	1 sec	3.3 yr	1 x 10 ⁸
T = 80 keV	~200 sec	41 yr	6.5 x 10 ⁶
T = 3000 K	380 000 yr	12 x 10 ⁶ yr	32
T= T ₀	~ H_0^{-1}	H_0^{-1}	~ 1

$$T_{\mu\nu} = 0 \iff a(t) = t \text{ and } k = -1$$

Linear evolution with time of the scale factor

- no acceleration (and no deceleration) of the expansion
- a linear scale factor during the whole history of the Universe solves the horizon problem
- time temperature relation

$$T = \frac{T_0}{H_0} \frac{1}{t}$$

	Standard Model	Dirac-Milne	Ratio
T= 170 MeV	3 x 10 ⁻⁵ sec	7 days	1.7 x 10 ¹⁰
T = 1 MeV	1 sec	3.3 yr	1 x 10 ⁸
T = 80 keV	~200 sec	41 yr	6.5 x 10 ⁶
T = 3000 K	380 000 yr	12 x 10 ⁶ yr	32
T= T ₀	$\sim H_0^{-1}$	H_0^{-1}	~ 1

No inflation needed to solve the horizon problem

No Dark Energy needed to solve the age problem

Primordial Nucleosynthesis

Thermal episode : production of ⁴He and ⁷Li (Lohiya *et al.* 98 & Kaplinghat *et al.* 00, ABL & Chardin 11)

Late decoupling of weak reactions, lead to ⁴He and ⁷Li

Primordial Nucleosynthesis

Thermal episode : production of ⁴He and ⁷Li (Lohiya et al. 98 & Kaplinghat et al. 00, ABL & Chardin 11)

Late decoupling of weak reactions, lead to ⁴He and ⁷Li

- Thermal episode : production of ⁴He and ⁷Li (Lohiya *et al.* 98 & Kaplinghat *et al.* 00, ABL & Chardin 11)
 - Late decoupling of weak reactions, lead to ⁴He and ⁷Li
 - D and ³He are totally destroyed by this thermal process

- **Thermal episode : production of ⁴He and ⁷Li** (Lohiya *et al.* 98 & Kaplinghat *et al.* 00, ABL & Chardin 11)
 - Late decoupling of weak reactions, lead to ⁴He and ⁷Li
 - D and ³He are totally destroyed by this thermal process

D and ³He production by photodisintegration of ⁴He (ABL & Chardin 11)

- Annihilation at the border of domains
- D and ³He final abondances as function of the typical size of domains
- Annihilation at the border of domains

 $\bar{\mathbf{p}} + \mathbf{p} \to \gamma + \alpha \to \mathbf{D},^{3} \mathrm{He},^{3} \mathrm{H}$

Primordial Nucleosynthesis

- Thermal episode : production of ⁴He and ⁷Li (Lohiya et al. 98 & Kaplinghat et al. 00, ABL & Chardin 11)
 - Late decoupling of weak reactions, lead to ⁴He and ⁷Li
 - D and ³He are totally destroyed by this thermal process
- 10 D and ³He production by photodisintegration of ⁴He 10¹⁸ (ABL & Chardin 11) Comoving emulsion size at 1 keV Annihilation at the border of domains 10¹⁷ D and ³He final abondances as function of the typical size of domains Annihilation at the border of domains 10 $\bar{p} + p \rightarrow \gamma + \alpha \rightarrow D$,³ He,³ H excluded 10¹⁵ CMB distort Domain size ~7 kpc comoving, but size at the moment of 10 production. Will evolve after 10⁵ 10⁴ recombination Zend
 - ³He/D >> 1, possibly a constraint as ³He/D is observed <1 (Sigl et al. 95)</p>

- Thermal episode : production of ⁴He and ⁷Li (Lohiya et al. 98 & Kaplinghat et al. 00, ABL & Chardin 11)
 - Late decoupling of weak reactions, lead to ⁴He and ⁷Li
 - D and ³He are totally destroyed by this thermal process

- D and ³He production by photodisintegration of ⁴He
 - Annihilation at the border of domains
 - D and ³He final abondances as function of the typical size of domains
 - Annihilation at the border of domains
 - $\bar{\mathbf{p}} + \mathbf{p} \rightarrow \gamma + \alpha \rightarrow \mathbf{D},^{3} \mathrm{He},^{3} \mathrm{H}$
 - Domain size ~7 kpc comoving, but size at the moment of production. Will evolve after recombination
 - ³He/D >> 1, possibly a constraint as ³He/D is observed <1 (Sigl et al. 95)</p>

BBN compatible with D, ⁴He, ⁷Li tension with ³He

- Historical discovery of acceleration of expansion
 - Riess et al. 98 & Perlmutter et al. 99 discovered that distant SN Ia are dimmer than expected
 - Interpretation that the expansion is accelerating under the effect of Dark Energy
 - Confirmed by other experiments (e.g. SNLS)
 - won 2011 Nobel prize

Historical discovery of acceleration of expansion

- Riess et al. 98 & Perlmutter et al. 99 discovered that distant SN Ia are dimmer than expected
- Interpretation that the expansion is accelerating under the effect of Dark Energy
- Confirmed by other experiments (e.g. SNLS)
- won 2011 Nobel prize

But

Dirac-Milne universe does not present acceleration (nor deceleration) of the expansion

Historical discovery of acceleration of expansion

Riess et al. 98 & Perlmutter et al. 99 discovered that distant SN Ia are dimmer than expected

- Interpretation that the expansion is accelerating under the effect of Dark Energy
- Confirmed by other experiments (e.g. SNLS)
- won 2011 Nobel prize

But

- Dirac-Milne universe does not present acceleration (nor deceleration) of the expansion
- With only high-z SNe Ia, Dirac-Milne is as good as ACDM.

Historical discovery of acceleration of expansion

Riess et al. 98 & Perlmutter et al. 99 discovered that distant SN Ia are dimmer than expected

- Interpretation that the expansion is accelerating under the effect of Dark Energy
- Confirmed by other experiments (e.g. SNLS)
- won 2011 Nobel prize

But

- Dirac-Milne universe does not present acceleration (nor deceleration) of the expansion
- With only high-z SNe Ia, Dirac-Milne is as good as Λ CDM.
- Nearby SN Ia are crucial

Historical discovery of acceleration of expansion

Riess et al. 98 & Perlmutter et al. 99 discovered that distant SN Ia are dimmer than expected

- Interpretation that the expansion is accelerating under the effect of Dark Energy
- Confirmed by other experiments (e.g. SNLS)
- won 2011 Nobel prize

But

Dirac-Milne universe does not present acceleration (nor deceleration) of the expansion

With only high-z SNe Ia, Dirac-Milne is as good as ACDM.

Nearby SN Ia are crucial

An offset on low-z SNe Ia by $\Delta m = 0.06 \text{ mag}$ makes the χ^2 equal

Kowalski et al. 08 estimate σ_{sys} =0.04 mag

Dirac-Milne universe close to best-fit

- CMB: major test of cosmological models
 - First peak corresponds to acoustic scale given by sound horizon seen on last scattering surface.

$$\theta = \frac{r_s}{d_A}$$

- CMB: major test of cosmological models
 - First peak corresponds to acoustic scale given by sound horizon seen on last scattering surface.

For Dirac-Milne, angular distance

$$d_A(z) = H_0^{-1} \frac{1}{1+z} \sinh(\ln(1+z))$$
 is 163 times larger than in Λ CDM.

one would expect a tiny angle!

First peak corresponds to acoustic scale given by sound horizon seen on last scattering surface.

For Dirac-Milne, angular distance $d_A(z) = H_0^{-1} \frac{1}{1+z} \sinh(\ln(1+z)) \quad \text{is 163 times larger than in ΛCDM}.$

one would expect a tiny angle!

But, due to linear scale factor, sound horizon is much larger than in standard model

$$r_s = \int c_s \frac{dt'}{a(t')}$$

Integrating from 40 MeV to ~7 eV (end of annihilation, cf BBN) yields acoustic scale around 1°!

First peak corresponds to acoustic scale given by sound horizon seen on last scattering surface.

For Dirac-Milne, angular distance $d_A(z) = H_0^{-1} \frac{1}{1+z} \sinh(\ln(1+z)) \quad \text{is 163 times larger than in } \Lambda \text{CDM}.$

one would expect a tiny angle!

But, due to linear scale factor, sound horizon is much larger than in standard model

$$r_s = \int c_s \frac{dt'}{a(t')}$$

Integrating from 40 MeV to ~7 eV (end of annihilation, cf BBN) yields acoustic scale around 1° !

Acoustic scale naturally emerges at 1°

Conclusion

Dirac-Milne universe

- Symmetric matter antimatter universe
- Antimatter is supposed to have a negative active gravitational mass

In fair agreement with studied cosmological tests

- Thermal primordial nucleosynthesis of ⁴He and ⁷Li Secondary production of D can constrain size of the matter-antimatter emulsion ³He production too high
- Taken at face value, SNe la data favour accelerating universe Dirac-Milne universe requires reasonable systematic errors
- Acoustic scale naturally expected at the degree scale in CMB

Still, many uncovered issues

- Disagrement on Baryonic Acoustic Oscillations (BAO)
- Structure formation
- CMB anisotropies

. . .