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Motivation for alternative models

@ 95% of our Universe escapes our knowledge

DARK

@ Dark Energy 75% engray
® True cosmological constant: why this value?

® Vacuum energy: 10'20 times smaller than expected

® "Coincidence problem"

© Dark Matter

® Baryon content from Standard Big-Bang nucleosynthesis not sufficient

© Still escapes direct detection
@ Inflation
® Introduced to solve horizon and flatness problem

Standard model relies on 3 ingredients which are
undetected and /or not understood
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Motivation for negative mass

Matter - antimatter symmetric Universe

Antimatter is supposed to have a negative active gravitational mass

Antimatter naturally comes as negative mass candidate from Kerr-Newman solution

h
® When ((]7 m, ma) — (—67 Me, ) then two R* connected by the annular singularity

@ Solution is symmetric under (’I“, e, m) — (—7“, —e, —m)

® In the second space, the solution is seen as
having reversed charge and mass (Carter 68)

® This strongly suggests antimatter!

® Also implies that cannot create negative
mass as independent degree of freedom




Negative mass in General Relativity

@ “Runaway” solution (Bondi57)

+ + If antimatter is Bondi-type negative mass,
e —> ) ) <« @ antihydrogen weighting experiments
¢ ® ® > Sshould see antimatter fall as matter
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@ Corresponds to negative inertial mass

® This would lead to incompatible annihilations

To have a viable cosmology. we need mutual
repulsion between matter and antimatter
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@ “Runaway” solution (Bondi57)

+ + If antimatter is Bondi-type negative mass,
e —> ) ) << @ antihydrogen weighting experiments
¢ ® ® > Sshould see antimatter fall as matter

+ -

<« @ < @

@ Corresponds to negative inertial mass

® This would lead to incompatible annihilations

To have a viable cosmology. we need mutual
repulsion between matter and antimatter

Electron-hole analogy: antimatter seen as hole. Goes up in a gravitational field.

) “Electron bubble” in superfluid helium; bubble accelerated upwards with 2g

o Voids in large-scale structures seen as negative density with respect to background
density (Dubinski et al. 93, Piran 97). What if background density is null?
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@ Flat space-time, open space

T)w=0<+=a(t) =t and k = -1

@ Linear evolution with time of the scale factor

@ no acceleration (and no deceleration) of the expansion

® alinear scale factor during the whole history of the Universe solves the horizon problem

. | 1o 1
© time - temperature relation T — — —

Hgt

Standard Model Dirac-Milne Ratio

No inflation needed to

T=170 MeV 3 x10°sec 7 days 1.7 x 1010
T=1MeV 1 soc 33 yr 1 10° solve the horizon problem
T =280 keV ~200 sec 41 yr 6.5 x 10°
T =3000 K 380 000 yr 12 x 108 yr 32 No Dark Energy needed to
T=To ~ Ho-" Ho 1 solve the age problem




Primordial Nucleosynthesis
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@ Thermal episode : production of 4He and 7Li (Lohiya et al. 98 & Kaplinghat et al. 00, ABL & Chardin 11)

@ Late decoupling of weak reactions, lead to “He and "Li
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Primordial Nucleosynthesis

@ Thermal episode : production of 4He and 7Li (Lohiya et al. 98 & Kaplinghat et al. 00, ABL & Chardin 11)

® Late decoupling of weak reactions, lead to “He and "Li
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@ D and 3He are totally destroyed by this thermal process
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® Late decoupling of weak reactions, lead to “He and "Li
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@ D and 3He production by photodisintegration of “He
(ABL & Chardin 11)

© Annihilation at the border of domains

® D and ®He final abondances as function of the typical
size of domains
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Thermal episode : production of *He and "Li (Lohiya et al. 98 & Kaplinghat et al. 00, ABL & Chardin 11)

® Late decoupling of weak reactions, lead to “He and "Li

® D and 3He are totally destroyed by this thermal process
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@ Thermal episode : production of 4He and 7Li (Lohiya et al. 98 & Kaplinghat et al. 00, ABL & Chardin 11)

® Late decoupling of weak reactions, lead to “He and "Li

® D and 3He are totally destroyed by this thermal process

@ D and 3He production by photodisintegration of 4He
(ABL & Chardin 11)

© Annihilation at the border of domains

® D and ®He final abondances as function of the typical
size of domains
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© Annihilation at the border of domains
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Comoving emulsion size at 1 keV

production. Will evolve after Tof
recombination

® SHe/D>>1, possibly a
constraint as 3He/D is
observed <1 (Sigl et al. 95) BBN compatible with D, 4He, "Li

tension with 3He
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Type la Supernovae

@ Historical discovery of acceleration of expansion

© Riessetal. 98 & Perimutter et al. 99 discovered that distant SN la are dimmer than expected
© Interpretation that the expansion is accelerating under the effect of Dark Energy
>
>

Confirmed by other experiments (e.g. SNLS)
won 2011 Nobel prize

@ But

Dirac-Milne universe does not present
acceleration (nor deceleration) of the expansion

© With only high-z SNe Ia, Dirac-Milne is as good as ACDM.

© Nearby SN la are crucial

An offset on low-z SNe la by Am = 0.06 mag
makes the X equal

Kowalski et al. 08 estimate Osys=0.04 mag

Dirac-Milne universe
close to best-fit
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©  For Dirac-Milne, angular distance
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da(z) = Hy' 1+~ sinh(In(1+ 2)) s 163 times larger than in ACDM.

one would expect a tiny angle!
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©  For Dirac-Milne, angular distance

B 1
dA(Z):H011+Z

sinh(In(1 + 2)) s 163 times larger than in ACDM.

one would expect a tiny angle!

© But, due to linear scale factor, sound horizon is much larger than in standard model

_ dt’ Integrating from 40 MeV to ~7 eV (end of annihilation, cf BBN)
I's Cs a(t!) yields acoustic scale around 1°!

Acoustic scale
naturally emerges at 1°



Conclusion L

@ Dirac-Milne universe

©® Symmetric matter - antimatter universe

© Antimatter is supposed to have a negative active gravitational mass

@ In fair agreement with studied cosmological tests

o Thermal primordial nucleosynthesis of 4He and “Li
Secondary production of D can constrain size of the matter-antimatter emulsion
3He production too high

o Taken at face value, SNe la data favour accelerating universe
Dirac-Milne universe requires reasonable systematic errors

o Acoustic scale naturally expected at the degree scale in CMB

@ Still, many uncovered issues

o Disagrement on Baryonic Acoustic Oscillations (BAO)
Structure formation

o
o CMB anisotropies
=]



