Opportunities for spin physics with AFTER

Cynthia Hadjidakis (insitut dep phssioue nuclearire

Fixed target projects at CERN

$$
\text { July } 7^{\text {the }}, 2011
$$

Orsay
Spin physics with AFTER
Spin asymmetry and experimental requirements Proton beam polarization at RHIC and possibility at LHC Polarized targets at Compass and Jlab

Physics motivations

Target polarization to measure Single Spin Asymmetry (SSA): $\mathrm{A}_{\mathrm{UT}}=\left(\sigma_{+} \sigma_{-}\right) /\left(\sigma_{+}+\sigma_{-}\right)$
unpolarized nucleon = parton mom. distr. $q(x) /$ long. pol. $=$ helicity $\Delta q(x) /$ trans. pol. $=$ transversity $\delta q(x)$

- $\mathrm{A}_{\mathrm{UL}} \rightarrow \mathrm{W}^{+/-: ~ i n d i v i d u a l ~ h e l i c i t y ~ d i s t r i b u t i o n ~} \Delta \mathrm{q}$ of quarks and antiquarks
- Aut $\rightarrow 1^{+} 1^{-}$: Sivers function (correlation between transverse momentum of a parton in the proton and the proton spin vector: link with orbital motion of partons in the nucleon - to access valence quarks, one should probe the large $\mathrm{x}_{\text {target }}$ region)
- Aut \rightarrow Quarkonium : production mechanisms, gluon Sivers function

Physics motivations

Target polarization to measure Single Spin Asymmetry (SSA): $\mathbf{A U T}=\left(\sigma_{+} \sigma_{-}\right) /\left(\sigma_{+}+\sigma_{-}\right)$
unpolarized nucleon = parton mom. distr. $q(x) /$ long. pol. $=$ helicity $\Delta q(x) /$ trans. pol. $=$ transversity $\delta q(x)$

- $\mathrm{A}_{\mathrm{UL}} \rightarrow \mathrm{W}^{+/-}$: individual helicity distribution $\Delta \mathrm{q}$ of quarks and antiquarks
- Aut $\rightarrow 1^{+} 1^{-}$: Sivers function (correlation between transverse momentum of a parton in the proton and the proton spin vector: link with orbital motion of partons in the nucleon - to access valence quarks, one should probe the large $\mathrm{x}_{\text {target }}$ region)
- Aut \rightarrow Quarkonium : production mechanisms, gluon Sivers function

Kinematics: 7 TeV proton beam on fixed hydrogen/deuterium target

- $\quad V_{\mathrm{s}}=115 \mathrm{GeV}$ and $\mathrm{y}_{\text {beam }}=4.8$
- $\tau=\mathbf{x}_{\text {beam }} \mathbf{X}_{\text {target }}=\left(\mathbf{M}^{2} / \mathbf{s}\right)=\mathbf{x}_{\text {min }}$
- $\quad \mathbf{x}_{\text {target }}=\mathbf{x}_{\text {beam }}=\mathbf{M} / V_{\mathbf{s}}$
- backward region: $\mathrm{x}_{\text {target }}>\mathrm{x}_{\text {beam }}$ to probe the target valence quarks

Physics motivations

Target and beam polarization: Double Spin Asymmetry (DSA)

- $\quad \mathrm{A}_{\mathrm{LL}} \rightarrow$ hight $\mathrm{p}_{\mathrm{T}} \pi^{0}$, jet, Quarkonia, open charm and beauty $-\Delta \mathrm{G} / \mathrm{G}$
- $\quad \mathrm{A}_{\mathrm{Tt}} \rightarrow \mathrm{l}^{+} \mathrm{l}^{-}$- transversity functions $\delta \mathrm{q}$

Kinematics: 7 TeV proton beam on fixed

 hydrogen/deuterium target- $\quad V_{\mathrm{s}}=115 \mathrm{GeV}$ and $\mathrm{y}_{\text {beam }}=4.8$
- $\quad \tau=\mathbf{x}_{\text {beam }} \mathbf{X}_{\text {target }}=\left(\mathbf{M}^{2} / \mathbf{s}\right)=\mathbf{x}_{\text {min }}$
- $\quad \mathbf{x}_{\text {target }}=\mathbf{x}_{\text {beam }}=\mathbf{M} / V_{\mathbf{s}}$
- backward region: $x_{\text {target }}>x_{\text {beam }}$ and $M>10$ GeV to probe the beam and target valence quarks

Measured spin asymmetry

- Definition

$$
\begin{aligned}
& \mathrm{A}^{\text {th }}=\left(\sigma_{++-} \sigma_{-+}\right) /\left(\sigma_{++}+\sigma_{-+}\right) \\
& \mathrm{A}^{\exp }=\left(\mathrm{N}_{++-} \mathrm{N}_{-+}\right) /\left(\mathrm{N}_{++}+\mathrm{N}_{-+}\right)=\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{T}} \mathrm{f}^{\text {th }} \quad\left(\text { same Eff } \mathrm{x} \text { Acc and } \mathrm{L}_{\text {int }} \text { in }++ \text { and }-+ \text { samples }\right)
\end{aligned}
$$

- What is needed experimentally?

Proton beam with polarization P_{B}
Proton/deuterium target with polarization P_{T}
Dilution factor $\mathrm{f}=$ ratio of polarizable nucleons / total number of nucleons in the target
Gas target: fraction of recombined gas atoms may reduce the polarization $f \sim 1$ but low density (used in collider)
Solid target: Figure of Merit $=\rho \mathrm{k}\left(\mathrm{f}_{\mathrm{T}}\right)^{2}($ target $=$ grains filled by refrigerator; $\mathrm{k}=$ packing factor: composition of pol. material /tot. volume)
Polarimeters both for beam and target
Luminometer as $\mathrm{A}^{\exp }=\left(\mathrm{N}_{++} / \mathrm{L}_{++}-\mathrm{N}_{-+} / \mathrm{L}_{-+}\right) /\left(\mathrm{N}_{++} / \mathrm{L}_{++}+\mathrm{N}_{-+} / \mathrm{L}_{-+}\right)$

Polarized proton beam at RHIC

- Polarized H - ion source
- Challenging because the produced polarized proton beam is accelerated: external magnetic field depolarizes the beam.
- Use of Siberian Snake ($=180^{\circ}$ spin rotator about a horizontal axis) to maintain the beam polarization of $\mathrm{P}_{\mathrm{B}}=60-70 \%$
- Spin rotator to switch the pol.
- Polarimeter: $5 \mu \mathrm{~m}$ diameter carbon fiber fixed targets and polarized atomic gas jet target - polarisation measurement with 5% accuracy
- Possible sources of systematics: luminosity variation, crossing angle variation: different bunch polarization pattern and flip of the polarization

Polarized Proton beam at LHC?

Extraction of proton beam with particles channelling in a bent crystal
The beam extraction induces a transverse polarization of the beam depending on the analyzing power of the crystal A_{0}
Successive collisions in the crystal amplify the polarization
M. Ukhanov, Nucl. Instrum. Meth. A 582 (2007) 378
$\mathrm{A}=$ analyzing power of the crystal nucleus

Fig. 2. Channeling in a bent crystal as a sequence of scatterings.

Fig. 3. Dependence of a polarization on the crystal bending angle.

Polarization reach $>50 \%$ depending on A_{0} No experimental tests performed

Polarized deuterium target at Compass

Figure of Merit $=\rho \mathrm{k}\left(\mathrm{f} \mathrm{P}_{\mathrm{T}}\right)^{2}$
${ }^{6} \mathrm{LiD}$ with $\mathrm{P}_{\mathrm{T}}=50 \%, \mathrm{k}=0.55, \rho=0.84 \mathrm{~g} / \mathrm{cm}^{3}, \mathrm{f}=0.4$
2 cells of 60 cm each separated by 10 cm
Technique of polarization $=$ Dynamic Nuclear Polarisation (DNP)

1. Need high homogeneous longitudinal (vs beam line) magnetic field ($\mathrm{B}=2.5 \mathrm{~T}$ and $\Delta \mathrm{B} / \mathrm{B}=3.5 \quad 10^{-5}$)-supra conductor solenoidal magnet system refrigerated at $\mathrm{T}=60 \mathrm{mK}\left({ }^{3} \mathrm{He} /\right.$ ${ }^{4} \mathrm{He}$ dilution refrigerator)
2. Polarization transfer from electron to deutons by means of microwave irradiation for a few hours / days (${ }^{6} \mathrm{LiD}$)

Figure 1. Side view layout of the target system. The muon beam enters the cryostat from the left. (1) target cells, (2) microwave cavity, (3) solenoid, (4) dipole, (5) microwave stopper
3. Target kept at $\mathrm{T}=50 \mathrm{mK}$ to increase the time relaxation (~ 1000 hours) in longitudinal or transverse holding magnetic field ($\mathrm{B}=0.5 \mathrm{~T}$)

- Target pol. measurement = system of nuclear magnetic resonance
- Possible sources of systematics: acceptance from long target size, beam intensity, spectrometer efficiency, ...: possibility to reverse the target spin orientation
- Ongoing developments: R\&D for thinner holding magnetic field system (allowing a larger angular aperture)

Polarized targets at Jlab

- NH_{3} solid target - few cm with $\mathrm{P}_{\mathrm{T}} \sim 80 \%$
DNP technique ($\mathrm{B}=5 \mathrm{~T}$ and $\Delta \mathrm{B} / \mathrm{B}<10^{-4} ; \mathrm{T}=1 \mathrm{~K}$) using permanent microwave irradiation FROST @ CLAS
- FROzen Spin Target FROST
with $\mathrm{P}_{\mathrm{T}} \sim 85 \%$
Polarized (DNP technique with $\mathrm{T}=0.3 \mathrm{~K}$ and $\mathrm{B}=5 \mathrm{~T}$) and then move ($\mathrm{T}=30 \mathrm{mK}, \mathrm{B}=0.56 \mathrm{~T}$ with relaxation time $=1000 \mathrm{~h}$) to the nominal position to allow a larger angular aperture for particle detection Relaxation time depends on the beam intensity.
- HD target: almost no dilution, $\mathfrak{f} \sim 1$, polarization carried out before the experiment. Large relaxation time expected.

Attempt last year, ongoing tests

Conclusion

- Spin physics opportunities with the extracted 7 TeV LHC proton beam
- Polarized solid targets are under control: SSA measurements
- Proton beam polarization at LHC may be possible: DSA measurements

