B meson reconstruction

Paul Jackson (BaBar) and Anze Zupanc (Belle) June 30th, 2011

4th Physics at the B-Factories workshop

Status

- □ A draft has been available on the PBF hypernews for a while now
 - ⇒http://hypernews.slac.stanford.edu/ HyperNews/BFLB/get/AUX/ 2010/09/30/15.05-2772-pbf-brecon.pdf
 - Current Table of Contents:
 - Introduction
 - 2. Methodology and Motivation
 - 3. Techniques
 - Hadronic tag B reconstruction
 - Semileptonic tag B reconstruction
 - Double-tagging

Introduction

- Currently includes a short description of the detectors
 - Is that relevant to retain?
 - Potentially useful, but could be trimmed down a little
- Include some brief description of how the sections will be set out?

Methodology and Motivation section

- Recoils method are crucial for studying decay modes where decay kinematics can not be fully constrained
- B_{tag} reconstructed semileptonically or hadronically
- A variety of "Double-tagging" methods are used for systematic studies, control samples and crosschecks
- Overview of this chapter is included
- Some mention of the relevance of these techniques for the Super Flavour Factories – should this be dropped or softened?

Techniques: Hadronic tag B reconstruction

- Description of BABAR's semi-exclusive approach to $B \to D^{(*)}Y$ reconstruction (two versions available at BABAR, only one described)
- Descriptions of Belle's approaches (two versions available at Belle)
 - cut based selection of exclusive modes: $B \to D^{(*)}(\pi, \rho, a_1, D^{(*)})$
 - neural-net based selection of semi-exclusive modes: $B \to D^{(*)}(K, \pi, 2\pi, 3\pi, 4\pi, D^{(*)})$ and $B \to J/\psi(K, K\pi, K\pi\pi)$
 - Probably we'll need description of both Belle's versions, since not all results from Belle will be based on the updated version.
 - Sections with results will refer to this section, but which version?
- Typical performance (efficiency) is given for all three cases
 - Plots are missing?
- \bullet ΔE , $m_{\rm ES}$ (M_{bc}) variables and Argus function are defined
 - Do we need to define them here? Can we refer to definitions given in previous sections?
- General overview of signal side reconstruction is given

Techniques: Semileptonic tag B reco

- Description of $B \to D^{(*)} \ell \nu_{\ell}$ reconstruction is given
- $cos\theta_{B,D\ell}$ variable is defined
 - Plots missing?
- Performance is given
- Comparison wrt. hadronic tag B reconstruction is briefly discussed (e.g. impact of loss of ability to determine signal B kinematics)
 → Plan is to expand the comparison of the semileptonic to hadronic methods.

Techniques: double-tagging

- Motivation for performing double tagged analysis is given
 - test of tag B reconstruction efficiency and the description of extra energy in calorimeter
 - Definition of the extra energy is missing.
- 3 classes: semileptonic double-tags, hybrid double-tags and hadronic double tags.
 - description of two approaches testing semileptonic tag B reconstruction efficiency made by BABAR
 - description of test of extra energy distribution with double-tags made by Belle

Is this section in any conflict with sections presenting the results (with tag *B* related systematics)?

Summary

- Made some progress on B-reconstruction section
- Uploaded to SVN!
- Contacted (sub)editors for assistance in writing some aspects
- What's missing?? Quite a bit!
 - Relevant distributions (some discussion with physics section likely beneficial)
 - Description of Belle techniques, currently very poorly covered
 - Some way to characterize the techniques as they evolved
 for easier reference by other sections
 - Explanation of use cases and evolution of different techniques employed (linked to physics again)
 - References

extras

