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Whats in the talk?

@ Lightning intro to TC, ETC, WTC and all that

@ Consequences of WTC --> LSTC, very narrow
@ pr — Wrr at the Tevatron

@ Other LSTC signatures at the Tevatron

@ LSTC discovery channels at the LHC



Introduction to TC, etc.

@ TC = new strong int'n of massless T-fermions
at A7 = several 100 GeV

@ T-fermions 1;.;, rp = (Ui7 Di)L,R ;
in complex IRs of (G~ and
LH doublets, RH singlets of (SU(2) ® U(1))ew

o (Tt Tr) #A0= (SUR)QU1)ew — U Em
with p = Mw /Mz cosbyw =1+ O(a)



@ Extended TC -- generates T1lq ¢ :

o Mprc/9rrc 2 100’'s of TeV to suppress FCNC'

@ Walking TC -- arc(Arc) near an IRFP,

runs slowly, almost to MEgrc




Consequences of WTC

1) LSTC: Walking (IRFP) needs MANY T-fermions
=> Low-scale Ar¢ (1 £ F2 < FEW (246 G@V) )

o TT bound states Vi = pPT, WT, AT With My, < 1TeV
@ Vr produced via DY process in 4q collisions

A s SR TRY
@ T accessed via Vi decays; mr — qq', U4

2) WTC enhances M, (x (TT)) MORE than M,

o => EXPGC"' M,OT < 2Mﬂ-
o M, = Mz HSOSDEIRSIEENSTVE " a Dit

(7 S e
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3) Only weakly-coupled decay channels are open
to the lightest Vr :

pr — Warp, yup; WZ, WW,AW/Z (W =~ W)

wr — yrrs Y45 LT (2 & Z5)

ar — yrp, Winmp; YWy /Zp; 074, (F v,




LSTC at the Tevatron

® Based on Technicolor Straw-Man model of

LSTC in Pythia

@ All dedicated studies & searc
standard TCSM paramefers:

hes so far use

SiIlXZl/S, QU:QD+1:17
Nrc =4, My, = Mas, = M,,;

@ Limits from CDF on pr — Wrpr — £Tvp b+ jet

@ and Dzero on pr — WZ — (-

:Vg[l_g_
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FIG. 3: 95% confidence level excluded region on technicolor
particles production cross section times branching fraction as
a function of m(pr) and m(mwy) mass hypothesis. The ex-
pected excluded region from background-only pseudoexperi-
ments are shown with the observed results from this analysis
and DO searches.

350
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CDF pr — War — £Fvb + jet exclusion

FIG. 4: Expected and excluded areas of the w7 uvs. pr masses
are given with the thresholds of the pr — War and pr —
mrar overlaid (color online).

D? pr —» WZ — £Fv, 074~ exclusion



or — Wrpr — £~vp 97 in CDFE

CDF has observed pp — WW/WZ — (v,jj
without b-tagging!

M [GeVic?)

Phys.Rev.D82:112001,2010

10



or — Wrpr — £~vp 97 in CDFE

CDF has observed pp — WW/WZ — (v,jj
without b-tagging!

150 )
M [GeVic?)

Phys.Rev.D82:112001,2010
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CDF Cuts for Wjj excess:
one e or u, pr > 20GeV, |n| < 1.0

exactly two jets, pr > 30GeV, |n| < 2.4
AR(L,§) > 0.52

pr(jij2) > 40 GeV

BT miss . > 25456V

My (W) > 30 GeV

[An(j1j2)] < 2.5

‘A¢(ET,missa ]1) | > 0.4



Invariant Mass Distribution of Jet Pairs Produced in Association
with a W boson in pp Collisions at /s = 1.96 TeV

T. Aaltonen.?' B. Alvarez Gonzédlez”,” S. Amerio,*! D. Amidei.** A. Anastassov,” A. Annovi,'” J. Antos,"?

—— CDF data (4.3f0")
— Gaussian 2.5%
B WW4WZ 4.8%
N Waldets 78.0%
0 Top 6.3%

B Z+jets 2.8%

£55 QCD 5.1%

~—— Bkg Sub Data (4.31b")
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FIG. 1: The dijet invariant mass distribution. The sum of electron and muon events is plotted. In the left plots we show the
fits for known processes only (a) and with the addition of a hypothetical Gaussian component (¢). On the right plots we show,
by subtraction, only the resonant contribution to M;; including WW and WZ production (b) and the hypothesized narrow
Gaussian contribution (d). In plot (b) and (d) data points differ because the normalization of the background changes between
the two fits. The band in the subtracted plots represents the sum of all background shape systematic uncertainties described
in the text. The distributions are shown with a 8 GeV/c” binning while the actual fit is performed using a 4 GeV/c” bin size.
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M, =290GeV, M, = 160GeV
o(pp — pr — Wrr) B(mp — jj) = 2.4pb
Dijet simulation for 4.3 fb ' (no b-tag!)
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+ ELM Cuts:

® Combine a 3rd jet with one of J1, J2 if its within
AR =15 of either of them.

@ Topological cuts (pr — Wrr kinematics):

@ A¢(]1,]2) 30 a5

e pr(W) > 60GeV
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M, =290GeV, M, = 160GeV
o(pp — pr — Wrr) B(mp — jj) = 2.4pb
Dijet simulation for 4.3 fb ' (no b-tag!)
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CDF + ELM Cuts



LSTC ==> there must be a o7 peak
near 300 GeV in My,

From V. Cavalieres thesis:

——— ML
B v
-
B e

! Cw-
B
-'f -3
D Lree

% 200 400 %

KS = 0.7 %, x*/ndf= 181.6/ 53 : KS = 0.2 %, x/ndf = 99.3/ 54

muons electrons
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M, =290GeV, M, = 160GeV
W,jj simulation for 4.3 fb (no b-tag)
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M, =290GeV, M, = 160GeV
W,jj simulation for 4.3 fb (no b-tag)
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What else can be done to reveal p1 ?
e.q., 0(qgq — pr — Wmp) o< sin® 0
back off p_T cut on W: pr(W) > 40 GeV
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Other LSTC signatures at the Tevatron:

@ Expect M, = M,., M,, =M, + a bit

PT

Take M, =290GeV, M,, =1.1M, = 320GeV

& o(wr — ymh — vbb) ~ 80fb
y

ar — YTy — vbq) ~ 185 fb

(
for =5 ]|
A a(w ,IOT%6+€_)212ﬂ) i i )
(a;

clay — e e P Fib
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- Instrumental Background
- Other SM Background
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LSTC at the LHC

* Les Houches 2009 study for
v 8= 10 (netv)deV, /Edt 25 T

e Focus on?,¢, U,V final states -- no jets!
smaller S, much smaller B

e Could pr — W37 be seen at the LHC??
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Discovery Channels of

/OTwa, arT Cl1' .I'he LHC
s WEE B, g

/0{:157 afl: /R W/W: ol W/ZIVE

0 0 K
wr, Py, Qp — g—l-g

WT ”YZO e ’% "¢ difficult!

Pr, Qp — (=1,  doable, but not discovery




LSTC at (10 TeV!) LHC --
Simulations for ~ 1fb~*

Case M Mo My, bVZPWir(rZ (e
la | 225|250 | 150 2301330 | 60 | 675
lb | 225|250 | 140 205 | 285 | 40 | 505
2a | 300|330 | 200 o El@s5 e 111 135
2b [ 300|330 180 45 | 85 V4 90
3a | 400 | 440 | 275 22 |. 40 | 4 40
3b | 400 | 440 | 250 14 | 35 3 30




LSTC at (7 TeV!) LHC --
Simulations for ~ 1fb~*

Case M,UT MCLT MT('T U(WZ]U(VWJU(’YZ)'U(€+6_)'
CDF | 290 | 320 | 160 ol YU 2255+
S only
NO K-factor B = 60--40

In +-10 GeV



or — W=Z0 5 (i,
T. Bose, E. Carrera, Y. Maravin (CMS)

CMS Preliminary CMS Preliminary
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CMS Preliminary
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0 O -+
Pr,wWr,ar — €

S.J. Harper (CMS)
N.B.: This >0 ifQu+QOp =0; here Quy + Qp =1
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\YeJe[=1 nominal syst. | improved syst.
la 20 20
1b 31 31
2a 170 150
2b 360 320
3a 610 560
3b 1120 930

Ldt (pb™!) needed aty/s = 10TeV to exclude wr — ete”
(with Qu + Qp ~ 1) at 95% CL in LSTC models 1a-3b.



wr — 2" = s
K. Black, B.C. Smith (ATLAS)

220 240 260 280 300 320 340 360 380M4?% V) 220 240 260 280 300 320 340 360 380 400M
(DT e

Left: Luminosity for 3-sigma evidence (dashed) and 5-sigma
observation (solid) for cases a (blue) and b (black).

Right: Luminosity for 95% CL exclusion of Cases a and b.
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TC is the most natural & elegant
explanation of EWSB

Low-scale TC is a consequence of walking arc

LSTC ==> technihadrons with striking
signatures at hadron colliders.

The most plausible new-physics explanation
of CDF’s dijet excess is pr — Wrr

pr — Wrr fits all features of the data so far
-- and provides further tests (pr peak, sin®6)
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=2>> Supporting LSTC signals at the Tevatron

are within reach of current data sets:

wr — AT, €7 € @r = qTT, e e

LSTC is easily accessible at LHC in
v, €7, Vs final states;

Access ~ 300 GeV with <5 !

The LHC certainly can discover

-- or rule out —- LSTC up to 600 — 700 GeV
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CDF vs. CDF + ELM cuts

(Mjj window = 120 -- 160 GeV)

Exactly 2 jets:

CDF cuts: S = 250, B = 1600
CDF + ELM cuts: S =175, B = 690

3rd jet added:

CDF cuts: S = 285, B = 2100
CDF + ELM cuts: S = 200, B = 880
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t the LHC
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What about b-content of the signal?
We studied b-fraction of events after CDF cuts
with 50% b-tag probability, 2.5% mistag rate

Fraction of events with 1 or more btags, after CDF cuts

b-tagging: 50%, fake 2.5%

for all jets: Injl <20

—— 8%
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We estimate b-fraction (with CDF cuts):

S(E59 -, Qlams)= 250, B = 1600

(0.50)(250) + (0.08)(1600) 1 b-tag
— = 0.13

250 + 1600 et ion

(0.25)(91) + (0.08)2(1600) A 2 b-tag

250 4+ 1600 S fraction

What did CDF get?

41



1.4 b-tagging

A full b-tagged analysis to study in detail the heavy flavor content of the excess is
out of the scope of the analysis presented in this note. However, we performed a
comparison between the tagging fraction in the signal region and sidebands. Qur
signal region is selected by requiring 120 < M;; < 160 and our sidebands region by
requiring 100 < M,; < 120 OR 160 < M,; < 180.

We then computed the ratio Tag / No Tag in several cases where no tag are events
where no tag info is required (and may include non taggable jets), while Tag can be:

e () Tight : none of the two jets has a positive SECVTX Tight tag.
1 Tight : at least one of the two jets has a positive SECVTX Tight tag.
2 Tight : both jets have a positive SECVTX Tight tag.
e () Loose : none of the two jets has a positive SECVTX Loose tag.
e 1 Loose : at least one of the two jets has a positive SECVTX Loose tag.
e 2 Loose : both jets have a positive SECVTX Loose tag.

In Tab.9 and 10 we summarize the numbers we estimate in data. We conclude that
the tag ratio in the excess region is compatible with what observed in the sidebands,
hence if we perform a counting experiment the excess is not enhanced by requiring
b-tagging.

Tag requirement | Signal region | Background region

0.8973 =+ 0.0436
0.1027 £ 0.0112
0.0078 = 0.0030
0.8549 = 0.0421
0.1451 = 0.0136
0.0089 = 0.0032

0.9187 = 0.0431
0.0813 = 0.0096
0.0084 = 0.0030
(0.8828 = (.0419
0.1172 = 0.0118
0.0127 = 0.0037

Table 9: Muon SecVix b-tag ratio

-0.3484
1.4433
-0.1506
-0.4695
1.5494
-0.7704

Background rogion

0.9103 =+ 0.0370
0.0897 £ 0.0088
0.0110 = 0.0030
0.8615 £ 0.0355
0.1385 £ 0.0111
0.0149 £ 0.0035

0.9055 = 0.0354
0.0945 = 0.0087
0.0095 = 0.0026
0.8698 = 0.0344
0.1302 = 0.0103
0.0145 = 0.0033

Table 10: CEM SecVix b-tag ratio

0.0947
-0.3934
0.3938
-0.1677
0.5455
0.0847




Several groups using
lattice methods to
study these questions:

@ Can a7 walk?
® How large is Ym? Is VYm == 12
@ Spectrum of PT, AT?

® What is the value of S?
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Leg for LSTC --
and o7, ap — YW~

(A. Martin & KL)

@ Inspired by TCSM + integrated treatment of W, Z;
@ Use “hidden local symmetry” formalism
@ SM fields (Higgsless!) + pr,wr,ar,(fr) + 7

® Includes WZW interactions for radiative
decays (a first!)

@ More restrictive -- fewer adjustable
parameters -- than TCSM in Pythia ...



.. in particular (for TCSM/Pythia default masses)

g i MPT
e

< Pythia default

-- Higgs-like formula for M,, as in KSRF relation

-- depletes pr — oWy, WrZyp

—- enhances pr — Y, YW, vZ (Qu + Qp ~ 1)
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,0% — W*Z% = leptons

[fb/GeV]

do(pp - W(Iv)Z (1))

[fb/GeV]

do(pp » W(lv)+7y)

310 320
M [GeV]

" .350A " " "

250

300

310 320
M [GeV]

330

" " .340; "

Case 2a

W + Z angular distribution comparison: Point 2A

—  total
SM

-- total — SM

- sinX(@")

x BR(WZ-31v) [fb]

do (pp > W7)
dcos (0*)
(¥

W + y angular distribution comparison: Point 2A

—  total
- SM
- total-SM

= (1 + cos*(6")

x BR(W-1lv) [fb]

dcos (67)

[—
]
o

da (pp» Wy)




Case J(WZ)pTU(WZ)aTU(’YW)pTU(VW)aT

1765 860

la. 145(35) | 43(30)| 995y | (s555)

920 695

1b 25(35) | 3430} | go5) |4 (558)

280 575

20 | 17(20) | 3.7 A7) | 5.5y | (160)

Signal and underlying SM cross sections (in fb)



Oh yeah? What about S?

(Peskin & Takeuchi using QCD)
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So -- what about S7?

@ Walking TC is NOT precociously-free QCD!

® QCD-based intuition is SUSPECT!
in particular, the S-integral cannot be

saturated by ONLY the lowest-lying PT, 4T
@ A tower of PT; UT ?

o Perhaps Ma, =~ My, 7
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mt77

Thats the subject of another talk!



