

1

EUROv Super Beam studies

Marcos Dracos

Super Beam studies

EUR

- Motivation
- Where we have started
 - previous studies
- Achievements
 - target
 - collector
 physics performance
- Where we are going

05/05/2011

θ_{13} limit expectations up to 2016

05/05/2011

M. Dracos

Э

Take profit of an upgrade of CERN accelerator complex

Motivation

1.Reliability: Present CERN accelerators too old ⇒ need for new accelerators designed for the needs of SLHC

H⁻ linac 2 GeV, 4 MW

Magnetic

Target

4

2.Performance: Increase of brightness of the beam in LHC to allow for phase 2 of the LHC upgrade. ⇒ need to increase the injection energy in the synchrotrons

LP-SPL: Low Power-Superconducting Proton Linac (4-5 GeV) PS2: High Energy PS (~ 5 to 50 GeV – 0.3 Hz) SPS+: Superconducting SPS (50 to1000 GeV) sLHC: "Super-luminosity" LHC (up to 10³⁵ cm⁻²s⁻¹) DLHC: "Double energy" LHC (1 to ~14 TeV)

• CDR for 2.2 and 3.5 GeV HP-SPL already published (CERN 2000-012, CERN 2006-006)

H⁻ linac 2 GeV, 4 MW

Accumulator

Target

Magnetic horn capture

Super Beam: conventional MW power neutrino beam

M. Dracos

Fréjus underground laboratory

8

The MEMPHYS Project (within FP7 LAGUNA DS)

Mainly to study:

•Proton Decay (GUT)

• up to $\sim 10^{35}$ years lifetime

•Neutrino properties and Astrophysics

- Supernovae (burst + "relics")
- Solar neutrinos
- Atmospheric neutrinos
- Geoneutrinos
- neutrinos from accelerators (Super Beam, Beta Beam)

Water Cerenkov Detector with total fiducial mass: 440 kt:

- 3 Cylindrical modules 65x65 m
- Readout: 3x81k 12" PMTs, 30% geom. cover. (#PEs =40% cov. with 20" PMTs).

(arXiv: hep-ex/0607026)

for a Hg target, 30 cm length, \varnothing 15 mm (N_{particles}×10¹⁶/sec, FLUKA)

E_k (GeV)	р	n	γ	e^+	e^-	π^+	π^{-}	μ^+	μ^{-}	K^+	K^0
2.2	1.4	17	5.0	0.08	0.17	0.24	0.18	4	1	7	6
3.5	1.8	23	7.0	0.15	0.28	0.41	0.37	10	3	35	30
4.5	2.3	25	7.7	0.21	0.35	0.57	0.39	11	3.3	93	68
8	3.1	33	11.0	0.41	0.63	1.00	0.85	30	9.5	413	340

the target must be inside the horn

M. Dracos

Accumulator Magnetic

Target

horn capture

180

Horn prototype (CERN)

First studies with old SPL characteristics:

• 2.2 GeV proton beam

For the horn skin AA 6082-T6 / (AlMgSi1) is an acceptable compromise between the 4 main characteristics:

- Mechanical properties
- Welding abilities
- Electrical properties
- Resistance to corrosion
- Same for CNGS

initial design satisfying both, Neutrino Factory and Super Beam

(see S. Gilardoni's thesis)

...but Al is not compatible with Mercury!

05/05/2011

M. Dracos

Sensitivity 3.5 GeV

no strong dependence on proton energy for 2.2 GeV

Minimum: θ₁₃= 1.2° (90%CL)

M. Dracos

H⁻ linac 2 GeV, 4 MW

Accumulat

Target

Magnetic horn capture

05/05/2011

θ₁₃ (deg.)

M. Dracos

05/05/2011

Performance and Comparisons

arXiv:hep-ph/0603172v3

	$\beta \mathrm{B}$	SPL	T2HK
Detector mass	$440 \mathrm{~kt}$	$440~\mathrm{kt}$	$440~{\rm kt}$
Baseline	$130 \mathrm{~km}$	$130 \mathrm{~km}$	$295 \ \mathrm{km}$
Running time $(\nu + \bar{\nu})$	5 + 5 yr	2 + 8 yr	2 + 8 yr
Beam intensity	$5.8(2.2) \cdot 10^{18}$ He (Ne) dcys/yr	$4 \ \mathrm{MW}$	$4 \mathrm{MW}$
Systematics on signal	2%	2%	2%
Systematics on backgr.	2%	2%	2%

From BENE (FP6) to EUROv (FP7, 2008-2012)

The WP2 team

- · Cracow University of Technology
- . STFC RAL
- . IPHC Strasbourg
- . Irfu-SPP, CEA Saclay
- external partners

- E. Baussan, O. Besida, C. Bobeth, O. Caretta, P. Cupial, T. Davenne,
- C. Densham, M. Dracos, M. Fitton, G. Gaudiot, M. Kozien, B. Lepers,
- A. Longhin, P. Loveridge, F. Osswald, P. Poussot, M. Rooney,
- B. Skoczen, G. Vasseur, N. Vassilopoulos, A. Wroblewski, J. Wurtz, V. Zeter, <u>M. Zito</u>

EURUv-WP2 studies

Accumulator ring

Target

Magnetic horn capture

Decay tunne

H⁻ linac 2 GeV, 4 MW

- · Beam simulation and optimization, physics sensitivities
- . Beam/target interface
- . Target and target station design
- · Horn design
- Target/horn integration
- . Cost
- · Safety

Technological Challenge

- Can we conceive a neutrino beam based on a multi-MW proton beam ?
- At the start of EUROv, no proven solution for the target and collector was proposed for this facility !
- Can we design a target for a multi-MW proton beam ?
- Can we do it with a reliable design without compromising the physics reach ?
- Target
 - . 300-1000 J/cm³/pulse
 - · Severe problems from: sudden heating, stress, activation
 - Solid versus liquid targets
 - · cooling
- . Horn
 - horn+reflector integration
 - pulser (up to 600 kA)
- . Safety

Lifetime (supposed to run for 10 years)

Studies on Hg targets

Contained mercury

Cavitation damage in wall of Hg target container after 100 pulses of 19 J/cc proton beam (WNR facility at LANL)

Free mercury jet

MERIT experiment: Beam-induced splashing of mercury jet (c.200 J/cc)

• Damping of splashes due to magnetic field observed as predicted

no problem with target cooling but...

- Magnetic horns are typically manufactured from aluminium alloy not compatible with Hg (severe and rapid erosion in addition to the shock wave problem).
- Necessity to protect the horn with a layer of material compatible with liquid Hg (lifetime?).
- B=O inside horn, ie no magnetic damping of mercury jet as in MERIT experiment.
- Combination of a mercury jet with a magnetic horn appears to be extremely difficult.

- Easier to combine with a magnetic horn (e.g. T2K target)
- Questions:
 - How does particle production for C compare with Hg?
 - Can a static graphite target dissipate heat from a 4 MW beam?
 - What is the expected lifetime for a graphite target in a 4 MW beam?
 - According to studies done at BNL, no problem with 1-1.5 MW proton beam.

cooling is a main issue...

He IN

Main Collector Challenges

- Horn : as thin as possible (few mm) to minimize the energy deposition.
- Pulsing repetition rate: 50 Hz (vs a few Hz up to now).
- Large electromagnetic wave, thermo-mechanical stress, vibrations, fatigue, radiation damage (multiphysics studies needed).
- Currents: 300 kA (horn) and 600kA (reflector),
 - design of a high current pulsed power supply.
- Cooling system in order to maintain the integrity of the horn.
- Definition of the radiation tolerance.
- Integration of the target and horn.
- Longevity in a high power beam.

H⁻ linac 2 GeV, 4 MW

Accumulato

How to deal with all these problems?

Present Collectors

Experiment	Current	Rep. Rate	Pulses per time period	Beam ►►►
Numi (120 GeV)	200 kA	0.5 Hz	6 Mpulses 1 year	NuMi horn 1 NuMi horn 2 NuMi horn 2
MiniBoone (8 GeV)	170 kA	5 Hz	11 Mpulses 1 year	MiniBooNE In operation
к2к (12 GeV)	250 kA	0.5 Hz	11 Mpulses 1 year	KEK horn 1 completed KEK horn 2 Small size
<i>Super-Beam</i> (3.5 GeV)	300 kA	50 Hz	200 Mpulses 6 weeks	CERN horn prototype for SPL
cngs (400 GeV)	150 kA	2 pulses/ 6 sec	42 Mpulses 4 year	CNGS horn 1 CNGS horn 1 CNGS horn 2
			MiniBooN	Linding damage de la desta des

1

How to mitigate the power effect

4 target/horn system (4x4 m²) with single decay tunnel (~30 m)

back to solid targets able to afford up to ~1.5 MW proton beam

- 2 options (only one pulser?):
- send at the same time 1 MW per target/ horn system
- send 4 MW/system every 50/4 Hz
 - in case of failure of one horn/target, continue with the 3 remaining ones sharing the 4 MW power

we get rid of Hg, but what about particle production?

more expensive but more reliable system

M. Dracos

H⁻ linac 2 GeV, 4 MW

Magnetic

- neutrino intensities are comparable despite non optimized focusing for long Graphite target (very promising)
- high energy tail for Graphite is slightly more important (not optimized focusing)
 05/05/2011 M. Dracos 29

The Bonus...

Released power:

- Hg: ~ 1 0.6 MW
- C:~0.8-0.1 MW
- Iower for Carbon !

neutron flux dramatically reduced wrt Hg! (~ x15)

Can we optimize the horn shape for the solid target?

05/05/2011

M. Dracos

31

Can we get rid of the reflector?

simple shape with reduced current!

(see N. Vassilopoulos' presentation)

Physics Performance

H⁻ linac 2 GeV, 4 MW

Accumulator

Target

Magnetic horn capture

Decay tunne

Neutrino Spectra

Cost of the facilities (CERN tool for project costing)

- The cost evaluation and safety issues of the proposed facilities are part of the design study.
- A first two days costing workshop has been organized at CERN in March 2010 (<u>http://indico.cern.ch/event/EuroNuCostingMar2010</u>)
 - presentation of the cost management techniques to the EURO ν participants towards defining a strategy for what needs to be done within the design study.
- Definition of the WP2 WBS underway (EUROv has also to cost HP-SPL, hopefully with the CERN help)

PB5 3Tev 2007	General Input	estimates		kup
Name	Domain:	Dan	opina Dinac	
▲ X 💋 CLIC	Sub Domain:	Dal	Pre-damping Ring e-	
🔺 🗙 🧔 1. Main Beam Production	Sub-Domain.	Pre		
X 💋 1.1. Injectors				
🖌 🏹 1.2. Damping Rings	Multiplicity:	1		
🖻 🗙 💋 1.2.1. Pre-damping Ring e+	Technical uncerta	ainty:		
🛛 X 🧔 1.2.2. Pre-damping Ring e-	Add child node			
🕨 🔲 📁 1.2.3. Damping Ring e+	C Remove			
🖻 🔝 💋 1.2.4. Damping Ring e-			-	
🖻 🗙 💋 1.3. Beam transport	1 Move up		VIS PAPAPHILIPPOU	
▷ 🗙 💋 2. Drive Beam Production	Move down			
▷ 🗙 💋 3. Two-beam accelerator	Download as Exc	el template		
🔺 🗙 🧔 4. Interaction Region	Calculate estimate	es per unit		
🖻 🗙 📁 4.1. Beam Delivery Systems	Calculate estimate	es per all units		
▷ X 💋 4.2. Machine-Detector Interface				
🕅 🗙 💋 4.3. Experimental Area				
X 💋 4.4. Post-collision line				
▲ X 🧐 5. Infrastructure and Services				
N C E 1 Civil Engineering				

Project Costing Tool

CERN costing tool

16-Mar-2010

7

Safety (workshop at CERN, 9-10 June)

Identify safety issues in the project

- Safety of **personnel** during installation, operation, maintenance and dismantling actions.
- Safety to materials/equipment assure their operation as required by the specs.
- Impact to the environment during installation, operation and dismantling of the facility.
- Do risk analysis for each identified safety issue
 - Ways to mitigate the risk → incorporate in the design, include in the cost estimate.
 - Classify the risks \rightarrow setup the project risk register.

Risk analysis

After EUROv

- R&D is needed for:
 - target
 - horn
 - horn pulsing system
- When?
 - next relevant EU call?

Conclusions

- The SPL to Fréjus Super Beam project is under study in FP7 EUROnu WP2:
 - Conventional technology
 - "Short" schedule
 - Cost effective
 - Many synergies with other projects
 - Competitive CP sensitivity down to $\sin^2(2\theta_{13}) \sim 10^{-3}$
- Work in EUROv:
 - physics performance has been improved (still room for improvements?).
 - the proposed system is now feasible and reliable
- We have started freezing all elements of this facility.
- Cost estimation soon.
- The physics potential of this project is very high (also for astrophysics) especially in case of SB/BB combination.
- R&D is needed.

End