Jérôme ODIER

Première physique auprès du détecteur Atlas préparation à la recherche du boson de Higgs

The ATLAS detector

44m

The ATLAS detector

where η is the **pseudo-rapidity** and ϕ the **azimuthal angle**

The LAr electromagnetic calorimeter

The calorimetric system

LAr electromagnetic

3 samplings : S1 (= strips), S2 and S3

L1CaloEM

Front End Board (FEB)

OTX (optical link)

3 gains: low, medium, high to avoid saturations

Electronic calibration procedure and the Automatic Validation Tool

- Several times a week, calibration runs are taken.
- The validation consist in choosing a reference run and check the stability for each cell (pedestal, delay, ramp and autocorrelation).
- The stability depend on: the solenoidal and the toroidal magnetic field, the temperature, etc...
- It is done using the Automatic Validation Tool (AVT).
- > Update the calibration database if needed.

Electronic calibration procedure

- AP (Automatic Processing) : reconstruction of calibration runs
- AVT (Automatic Validation Tool) : stability of cells (pedestals, etc...)
- → ECalDB : database
- EcalDBConsole : console

ECalWebDisplay

<u>F</u> ichier Éditio <u>n</u> <u>A</u> ffichage	<u>H</u> istorique <u>M</u> arque-pages <u>O</u> utils Aid <u>e</u>					
🔿 👻 😂 🔶	Corn.ch https://lar-elec-automatic-validation.web.cern.ch/lar-elec-automatic-validation/cgi-t ☆ ✔ Aucun ✔ Google					
🗃 ECalWebDisplay	· 수	~				
	Campaigns information	<u>^</u>				
	Id Date Type Partition Toroid Solenoid DO Flags Flags					
	Reference campaign id=44 Fri, 01 Apr 2011 11:05 WEEKLY EM EMBPS HECFCAL OFF OFF UNDEFINED YELLOW					
	Compared campaign id=48 Thu, 07 Apr 2011 15:22 DAILY EM OFF OFF UNDEFINED GREEN					
Validation plots						
[AUTOCORR] [PEDESTAL] [NOISE] [RAMP]						

Deviating channels

Table summarizing the deviations (normalized to threshold)

Side	FT	Slot	Channel	CL	BadCh	AutoCorr	Ped	Noise	Ramps	Ch history
EMBA	1	5	16	48	3=deadReadout/deadCalib					History
EMBA	1	5	17	49	3=deadReadout/deadCalib					History
EMBA	1	5	18	50	3=deadReadout/deadCalib					History
EMBA	1	5	19	51	3=deadReadout/deadCalib					History
EMBA	6	10	54	118	4=deadPhys					History
EMBA	7	6	83	67	0=None	1.185				History
EMBA	8	8	111	99	4=deadPhys					History
EMBA	8	8	115	99	4=deadPhys					History
EMBA	9	3	Θ	16	0=None				_ 1.839 32.287	History
EMBA	9	3	64	16	0=None				_ 1.878 32.931	History
EMBA	9	4	1	33	4=deadPhys					History
EMBA	9	8	74	98	4=deadPhys					History
EMBA	14	9	64	12	4=deadPhys					History
EMBA	19	8	4	96	0=None	-1.225 -1.890 -2.989		$1.629 \ 5.788 \ 11.211$	_ 1.014 1.507	History
EMBA	19	8	5	97	0=None	-1.477 -1.209 -2.785	1.097 _	4.580 21.664 14.394	_ 1.251 1.476	History

Low energy √s=7TeV data (2010)

Low energy (E~500MeV)

• I worked on low energy **photon** reconstruction.

Cell cluster reconstruction (seed = topological cluster => fixed size cluster 3x3).
Cell cluster energy calibration (longitudinal weight method).
Inner detector track-cluster association.

• Photon ~ cluster with no associated track.

Low energy (E~500MeV)

• I worked on low energy **photon conversion** reconstruction $\gamma \rightarrow e^+ e^-$.

Low energy (E~500MeV)

- I worked on low energy photon conversion reconstruction.
 - (1)We select single tracks (inner detector).
 - (2)Conversion candidates are then created by pairing oppositely charged tracks.
 - (3)Photons are **massless** therefore the emerging tracks have to be parallel at the vertex (small opening angle, D-R1-R2 \rightarrow 0).
 - (4)The selected track pairs are fitted to a common vertex with the constraint that they be parallel at the vertex. The quality of the fit is evaluate with the χ^2 .

Periods A, B, C

1st application : neutral pions

- The π° meson has a small mass of 134.9 MeV/c² and a short mean lifetime of 8.4e-17 second (decay at interaction point).
- Its most common decay mode:

- Three situations have been studied:
 - no photon conversion: $\pi^0 \rightarrow \gamma \gamma$
 - one photon conversion: $\pi^0 \rightarrow \hat{\gamma} \gamma (\rightarrow e^+ e^-)$
 - two photon conversions: $\pi^0 \rightarrow \gamma (\rightarrow e^+ e^-) \gamma (\rightarrow e^+ e^-)$

Fit = Gaussian + crystal ball + 4th order Chebyshev polynomial.

17

- -The η -uniformity better than:
 - * 2% in the barrel,
 - * 1% in the end-cap.
- -The φ -uniformity better than:
 - * 2% in the barrel,
 - × 2% in the end-cap,
 - * the RMS is always better than 7%.
- Results compatible with the expected ones at startup.

- The DNA (Dynamic Noise Adjustment) track fitter have been used to apply Bremsstrahlung corrections.
 - The mass is closer to the PDG one and the resolution is improved.
- The simulation is larger than the data.

neutral pions : conclusion

- Both mass and width are in agreement with the PDG values (better than 1%).
- The (η, φ) -uniformity is better than 2% for both barrel and end-cap.

2nd application : material mapping

- Converted photons can be used to study the ID geometry in R, η and ϕ and to provide radiation length estimates :

 $\gamma \rightarrow e^+ e^-$

 Basic method: the quantity of conversions depends on the material density.

$$egin{aligned} &rac{X}{X_0}=-rac{9}{7}\mathrm{ln}(1-F_{\mathrm{conv}})\ &F_{\mathrm{conv}}=rac{N_{\mathrm{reco}}}{N_{\mathrm{tot}}}rac{F_{\mathrm{comb}}F_{\mathrm{mis}}}{\epsilon}rac{1}{\mathrm{exp}(-7/9M_{\mathrm{up}}) \end{aligned}$$

Goal estimation ~1%.

GEOMETRY GEO-10-00-00

- For now focus on conversions fully contained in tracker barrel, $|\eta| < 0.6255$
- Important differences for the pixel supports !

GEOMETRY GEO-16-00-00

- \checkmark For now focus on conversions fully contained in tracker barrel, $|\eta|{<}1$
- Better agreement !

ATLAS-GEO-10-00-00

ATLAS-GEO-16-00-00

Pixel Global Frame

GEOMETRY GEO-16-00-00

R [mm]

La	yer	Purity	Efficiency	Material (Data/MC)
E	3P	0.994	0.100	1.00 ± 0.15
E	3L	0.995	0.114	1.04 ± 0.12
F	°1	0.996	0.085	0.93 ± 0.11
F	2	0.997	0.113	0.94 ± 0.11
PS	ST*	1.000	0.093	0.97 ± 0.13
SC	CT1	1.000	0.043	0.92 ± 0.13

25

R [mm]

Validation of shower shap variables with cosmic muons (2009)

- Electron and photon identification done from shower shape variables.
- For S2 (for instance) :
 - Reta : ratio of the energy in a 3x7 cluster and the energy in a 7x7 => eta extension
 - Rphi : ratio of the energy in a 3x3 cluster and the energy in a 3x7 => phi extension

27

Shower shape variables

- For S2 (for instance) :
 - Reta : ratio of the energy in a 3x7 cluster and the energy in a 7x7 => eta extension
 - Rphi : ratio of the energy in a 3x3 cluster and the energy in a 3x7 => phi extension

- Electron and photon identification done from shower shape variables.
- For S1 (for instance) :
 - Fside : energy outside a core of 3 strips

$$F_{side} = E_{\pm 3} - E_{\pm 1} / E_{\pm 1}$$

Shower shape variables

=> Important effect on Fside.

Cosmic muons 2008 (before pp collision)

• Method: select « collision like » cosmic muons: projective muons: small z0 and small impact parameter d0 (relatively to (0,0,0)).

Cosmic muons

Higgs search preparation H->ZZ->4I (I=e,µ) √s=7TeV data (2011)

H -> ZZ -> 4I

H->4I (H->eeee, H-> $\mu\mu\mu\mu$, H->ee $\mu\mu$) is the golden channel for ATLAS.

Higgs - Electron study √s=7TeV

• I am working on the reconstruction of Z bosons supposed from Higgs boson in the channel $Z \rightarrow e^+e^-$.

Higgs - Electron study

- We keep only isolated electrons from Z (to reject jets for example).
- I am working on the electron selection.
 - \sum Etcone^{20°}/pt<0.3
 - ∑ptcone^{20°}/pt<0.2</p>

(calorimetric isolation) (tracking isolation)

Full Higgs reconstruction process Finally, I am working on the full higgs reconstruction process.

	Physics Object Selection			
	Muons			
μ-ID	TightMuons (MCP group recommendation). Please include both Muid and Staco			
Cosmic Cut	$ d_0 < 1 mm$ (where d_0 is relative to the primary vertex)			
Kinematics	p _T >7 GeV, η <2.5			
	Electrons			
Algorithm	Author = 1 or 3			
e-ID	Medium			
Kinematics	E_T > 15 GeV (EM cluster energy/track direction), $ \eta_{Cluster} $ <2.47 (including the crack region)			
ObjectQuality	Not Available yet			
Overlap Removal				
e-h	Electrons sharing the same ID-track with a muon candidate are removed. Recommended: el_track[d0, z0, phi, qoverp] and mu_muid/staco_id_[d0, z0, phi, qoverp].			
	IIII selection			
Quadruplet Selection (DILS)	Two same flavour (SF) and opposite sign (OS) lepton pairs. Within a quadruplet, the SFOS pairing that give the mass closest to the Z-boson is considered the primary di-lepton, and the other the secondary di-lepton			
Kinematics	Quadruplet should contain at least two high E_T leptons, with $E_T > 20 \text{ GeV}$.			
	Following comment in CDS we should consider matching at least one of the leptons in the quadruplet to the trigger object			
Primary Di-Lepton Mass	m _Z - m _{l1 l2} < 15 GeV			
Secondary Di-Lepton Mass	Please refer to the table			
ΔR of leptons in the quadruplet	$Min[\Delta R(l_i, l_j)] > 0.10$			

38

Full Higgs reconstruction process

Track Isolation	All leptons of the quadruplet should have relative track isolation [cone $\Delta R < 0.30$] less than 20%. Contribution of overlapping leptons from the quadruplet is removed for $\Delta R < 0.30$
Calo Isolation	All leptons of the quadruplet should have relative calo isolation [cone $\Delta R < 0.20$] less than 30%. The contribution of overlapping leptons is removed for $\Delta R < 0.18$ [see section 5.2.1 of the <u>note</u>]
Impact Parameter Significance	$ d_0 /\sigma(d_0)$ applied to the two lowest p_T leptons for $m_{4l} < 190 \text{ GeV}$. For electrons <6, for muons <3.5. Recommended variables : el_trackd0pvunbiased & el_tracksigd0pvunbiased and mu_*_trackd0pvunbiased & mu_*_tracksigd0pvunbiased
Mass Window	For the final quadruplet mass calculation a Z mass constraint is applied

Currently : six H->eeµµ candidates !

TODO: Study the background: electrons from b quarks.